

Aware IM

Version 8.8

Programmers Reference

 Copyright © 2002-2023 Awaresoft Pty Ltd

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 2 of 90

CONTENTS
ABOUT THIS DOCUMENT ...4

1 ADDING PROGRAMMING EXTENS IONS TO AWARE IM...4

2 GENERAL GUIDELINES ...5

3 ADDING CUS TOM PROCESS ES ...5

3.1 WRITING CODE FOR A CUSTOM PROCESS COMPONENT ... 6
3.1.1 execute (IExecutionEngine, Object []) ..7
3.1.2 resume (IExecutionEngine, Object []) ..7
3.1.3 cancel () ..8
3.1.4 Examples of custom process components ...8
3.1.5 IExecutionEngine interface .. 12
3.1.6 IExecutionContext interface... 23
3.1.7 IEntity interface.. 25
3.1.8 IEntityTemplate interface ... 27
3.1.9 INotification interface ... 28

4 ADDING CUS TOM CHANNELS ... 28

4.1 IMPLEMENTING CHANNEL’S SOURCE AND SINK .. 30
4.1.1 Writing a Sink ... 31
4.1.2 Writing a Source .. 34
4.1.3 Handling replies to service requests .. 38
4.1.4 MessageInterpreter class.. 39
4.1.5 MessageBuilder class.. 41

4.2 IMPLEMENTING CHANNEL TYPE COMPONENT ... 42
4.3 IMPLEMENTING CHANNEL SETTINGS EDITOR.. 46

5 ADDING FUNCTION LIBRARIES ... 49

5.1 IMPLEMENTING FUNCTION LIBRARY.. 49
5.1.1 ISQLBuilderHelper interface... 52
5.1.2 Function library example ... 52

6 ADDING CUS TOM DOCUMENT TYPES .. 55

6.1 IMPLEMENTING CLIENT SIDE COMPONENT.. 56
6.2 IMPLEMENTING SERVER SIDE COMPONENT... 59
6.3 DATAPRESENTATIONTEMPLATE CLASS.. 61
6.4 IDOCUMENTDATASOURCE INTERFACE... 63
6.5 EXAMPLE ... 64

7 ADDING REPORT SCRIPTLETS ... 69

7.1 IMPLEMENTING CODE FOR THE SCRIPTLET ... 70
7.1.1 IReportEnvironment interface ... 71

7.2 EXAMPLE ... 73

8 WRITING CLIENT-S IDE PLUGINS .. 75

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 3 of 90

8.1 ARCHITECT URE OF THE CLIENT -SIDE CODE .. 76
8.2 MODIFYING DEFAULT BEHAVIOR AND PRESENTATION OF QUERIES.. 77
8.3 MODIFYING DEFAULT BEHAVIOR AND PRESENTATION OF FORMS .. 79
8.4 MODIFYING DEFAULT BEHAVIOR AND PRESENTATION OF FORM SECTIONS... 81
8.5 MODIFYING DEFAULT PRESENTATION OF INDIVIDUAL FIELDS ON FORMS ... 81
8.6 MODIFYING DEFAULT BEHAVIOR OF MENU IN VISUAL PERSPECTIVES ... 84
8.7 MODIFYING DEFAULT BEHAVIOR AND PRESENTATION OF CONTENT PANELS IN VISUAL PERSPECTIVES 84
8.8 AWAREAPP OBJECT.. 85
8.9 USING JAVASCRIPT TO INTEGRATE CUSTOM CORDOVA PLUGINS FOR NATIVE MOBILE APPLICATIONS........... 86

8.9.1 Creating a contact on the phone ... 87
8.9.2 Send email to the selected contact .. 89

APPENDIX A: CORRESPONDENCE OF ATTRIBUTE TYPES AND JAVA TYPES .. 90

Trademarks
Aware IM is a trademark of Awaresoft Pty Ltd.

Java is a trademark of Sun Microsystems.

Microsoft Windows, Microsoft Access, Microsoft SQL Server, Microsoft

Internet Explorer are trademarks of Microsoft Corporation.

MySQL is a trademark of MySQL AB.

Cloudscape is a trademark of IBM Corporation.

Netscape Navigator is a trademark of Netscape Communication Corp.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 4 of 90

About this document

This document describes the Application Programming Interface (API) to the Aware IM software
system. The intended audience is Java and Javascript programmers who want to add
programming extensions to the applications configured with Aware IM.

1 Adding programming extensions to Aware IM

Aware IM is a powerful software system that allows users to configure the fully functional

Internet enabled applications without involving any programming work in most cases. Thus
Aware IM can be used not only by professional developers but also by business professionals and

end users.

In certain cases, however, it may be necessary to add programming extensions to Aware IM in

order to implement the application functionality that is otherwise very difficult or impossible to
configure using the available configuration tools. This mostly applies to the calculation extensive

functionality (for example, some mathematical algorithms) or interaction with a non-standard
hardware that is not supported by Aware IM out-of-the-box.

It is important to stress, though, that in order to support such functionality programmers do not
have to learn new technologies or understand at a very deep level the internals of the Aware IM

software. All that is required is the knowledge of the Java programming language (other
languages will be supported in the future) and generic understanding how the extensions fit into
the Aware IM framework. In most cases programmers have to implement some standard

interface that Aware IM requires in order for the new extensions to plug in naturally into the
Aware IM software. The programmer’s job is, therefore, to understand what different methods of

the interface mean and write the code that implements these methods.

Aware IM allows programmers to write extensions (plug-ins) in the following areas (see “Aware

IM User Guide” for the explanation of these areas):

 Custom processes implemented by software components rather than by rules.

 Custom channels for intelligent business objects.

 Custom function libraries.

 Custom document types.

 Report calculation components (scriptlets).

In addition Aware IM allows developers to use Javascript to affect the behaviour of user interface

widgets on the client (browser).

This document aims to describe in detail what is involved in adding extensions to each of these

areas. Before we start describing each area individually we will describe some common steps
required to add the extensions to any of the above areas.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 5 of 90

2 General guidelines

The following section describes the common steps required to add programming extensions to the
Aware IM software system. It is assumed that the reader is familiar with the basics of
programming in the Java programming language and the general steps involved in compiling

Java source code and packaging jar files.

 All extensions (except scripts running on the client) have to be written in the Java
programming language.

 As all extensions implement some standard Java interface exposed by Aware IM, the

CLASSPATH variable used when compiling the extensions must contain a reference to the

correct location of the Aware IM jar filees (awareim.jar, shared.jar,

openAdaptor.jar, connection.jar). For example, the command to compile the code
implementing the extension might look something like this:

javac –classpath c:\AwareIM\Tomcat\lib\awareim.jar;

c:\AwareIM\Tomcat\lib\shared.jar;

c:\AwareIM\Tomcat\lib\connection.jar;

c:\AwareIM\Tomcat\lib\openAdaptor.jar myextension.java

 The name of the Java package where the extension will reside is not mandated and is up to a
programmer.

 The resulting extensions may be packaged into one or several jar files. These jar files have to
be placed into the AwareIM/CustomJars directory (if this directory does not exist, create it

manually)

 If running Aware IM as a Windows service modify the files AwareIM/bin/awareim.conf and

AwareIM/bin/wrapper.conf to add the jar files to the list of jar files used

3 Adding custom processes

The following section describes how to write extensions implementing custom processes and
plug them into Aware IM.

To implement custom processes and add them to the configuration of your application follow the
steps below:

1. Write the code for the process, compile it and add it to the jar file with your custom

extensions. Make sure that the jar file is placed in the AwareIM/CustomJars directory (see

section 2)
2. Add the process to your application configuration using the Configuration Tool (see

“Adding/Editing Processes” section in the “Aware IM User Guide”). When adding the
process click on the “Implementation” property in the list of process properties and select the
“Process is implemented by custom component” radio button. Then specify the fully qualified

name of the class that implements the component, for example
com.myextensions.MyProcessExtension

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 6 of 90

The rest of the section describes how to write the code implementing the custom process (step 1

above).

3.1 Writing code for a custom process component

When writing a process it is important to understand how processes fit into the architectural
framework of Aware IM. When a process is started Aware IM creates the execution context,
which contains the information about the environment in which the process is running. This

information contains the data about the user who started the process, the process start-up time, the
information about the current database transaction as well as many other things. The execution

context is available to the process as the IExecutionContext interface. Because a process in
Aware IM runs in a “sandbox” there are certain limitations on what the process can do (see

guidelines later in this section).

A process communicates with Aware IM through the call-back interface called

IExecutionEngine. This interface has a variety of methods that a process can use to change

attributes of objects, start other processes, call services of service providers etc.

Sometimes a particular process calls a service, which takes a long time to fulfil. In this case the

call to the service may time out. If this happens the process is suspended. This means that Aware

IM moves the process into the “standby” mode – it is no longer active and is waiting for the reply

from the service provider. Whenever such reply arrives (the reply may arrive in a few seconds,
hours, days or months or never arrive at all) Aware IM automatically resumes the process and the
process continues execution from where it left off.

The custom process component must implement IProcess interface, which has two main

methods – execute and resume. The execute method is called when the process is started

and the resume method is called when the process is resumed after having been suspended.
Both methods are described in detail later in the section.

The following guidelines should be used when writing a process:

 A process is not supposed to perform any operations with the database directly (such as
create, open or modify database tables, manage transactions etc) – this is taken care of by the

Aware IM framework.

 A process generally should not take long to execute as it is running within a context of a
database transaction. If a process does take a long time to execute it should every now and again

send a special signal to the Aware IM framework. Having received such a signal Aware IM
would suspend the process, commit the current transaction and continue the process execution

(resume the process). This signal can be sent if the process throws

SuspendProcessException and sets its resumeImmediately flag to true, for example:

throw new SuspendProcessException (true).

Before doing so the process should obviously remember its current state so that it can

correctly resume itself in the resume method.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 7 of 90

 If a process calls a method of the IExecutionEngine interface, which throws

ServerTimeOutException the process is supposed to catch this exception and

throw SuspendProcessException passing the original

ServerTimeOutException to the SuspendProcessException, for example:
….
try

{

 engine.updateEntity (this, entity, null, null);

}

catch (ServerTimeOutException se)

{

 throw new SuspendProcessException (se);

}

The methods of the IProcess interface that the custom process components must implement

are described below:

3.1.1 execute (IExecutionEngine, Object [])

public Object execute (IExecutionEngine engine, Object [] parameters)

 throws SuspendProcessException, ExecutionException, AccessDeniedException;

This is the main method of the interface that is called when the process is started.

Parameters:

engine – call back interface that allows the process to call services of Aware IM. See

IExecutionEngine interface.

parameters – array of the process parameters. This array is null if process doesn’t

have any input declared in the configuration. Otherwise the array has as many members as
there are input business objects in the declaration of the process. Each member of the

array is an instance of IEntity interface.

Returns: should always return null.

Throws:

SuspendProcessException - if one of the methods of the

IExecutionEngine threw SuspendProcessException or if the process wants
to commit the current transaction.

ExecutionException - if something is wrong

AccessDeniedException – should not be thrown by the process component

directly

3.1.2 resume (IExecutionEngine, Object [])

public Object resume (IExecutionEngine engine, Object reply)

 throws SuspendProcessException, ExecutionException, AccessDeniedException;

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 8 of 90

This method is called by the Aware IM framework when the process receives the reply from the

service provider and gets resumed.

Parameters:

engine – the call back interface that allows the process to call services of Aware IM.

See IExecutionEngine interface.

reply – reply received from the service provider. This is the instance of the

INotification object. The attributes of this notification can be used to check the

specific values of the reply. For example, if a remote service of a service provider were

called, the reply notification would have the attributes as defined by the service
declaration exposed by the provider. If a process was resumed immediately after its

suspension in order to commit the current transaction, the reply is null.

Returns: should always return null.
Throws:

SuspendProcessException if one of the methods of the IExecutionEngine

threw SuspendProcessException or if a process wants to commit the current

transaction.

ExecutionException if something is wrong

AccessDeniedException shouldn’t be thrown by the process component directly

3.1.3 cancel ()

public boolean cancel ();

This method is called by the Aware IM framework when the operator sends the request to cancel

the process.

Parameters: none

Returns: the method should return true if it allows the system to cancel the process. In this

case it should set an internal flag indicating that the process has been cancelled. The execute

and resume methods should periodically check this flag and if its value is true abort the

execution of the process (see section 3.1.4). If a process is in a state that does not allow

canceling, the method should return false.

3.1.4 Examples of custom process components

The following example shows the code for the simple process component that changes the
attribute of the process input.

public class SimpleProcess implements IProcess

{

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 9 of 90

 public SimpleProcess()

 {

 }

 /**

 * @see com.bas.basserver.executionengine.IProcess#cancel()

 */

 @Override

 public boolean cancel()

 {

 return true;

 }

 /**

* @see

com.bas.basserver.executionengine.IProcess#execute(com.bas.basserver.exe

cutionengine.IExecutionEngine, java.lang.Object[])

 */

 @Override

 public Object execute (IExecutionEngine engine, Object[] parameters)

throws SuspendProcessException, ExecutionException,

AccessDeniedException

 {

 // one entity is declared as process input

 if (parameters == null || parameters.length != 1 ||

 ! (parameters [0] instanceof IEntity))

 {

 return null;

 }

 // get the parameter

 IEntity entity = (IEntity) parameters [0];

 Object oldValue = null;

 try

 {

 // change “attrName” attribute to “attrValue” in memory

 oldValue = entity.getAttributeValue (“attrName”);

 entity.setAttributeValue (“attrName”, "attrValue");

 }

 catch (Exception e)

 {}

 try

 {

 // update entity in persistence

 engine.updateEntity (this, entity,

new String [] {“attrName”},

new Object [] {oldValue});

 }

 catch (ServerTimeOutException ste)

 {

 throw new SuspendProcessException (ste);

 }

 return null;

 }

 /**

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 10 of 90

* @see

com.bas.basserver.executionengine.IProcess#resume(com.bas.basserver.exec

utionengine.IExecutionEngine, java.lang.Object)

 */

 @Override

 public Object resume (IExecutionEngine engine, Object reply)

 throws SuspendProcessException, ExecutionException,

 AccessDeniedException

 {

 return null;

 }

The next example shows the code of the process that performs some lengthy calculation and

throws SuspendProcessException every now and again:

public class LongProcess implements IProcess

{

 private boolean m_cancelled = false;

 private long m_count;

 public LongProcess()

 {

 }

 /** @see IProcess#cancel () */

 @Override

 public boolean cancel ()

 {

// set m_cancelled flag. This flag will be checked by execute //

and resume methods

 synchronized (this)

 {

 m_cancelled = true;

 }

 return true;

 }

 /**

 * @see IProcess#execute(IExecutionEngine, Object [])

 */

 @Override

 public Object execute (IExecutionEngine engine, Object [] parameters)

 throws SuspendProcessException, ExecutionException

 {

 m_count = 0;

 execute (engine);

 return null;

 }

 private void execute (IExecutionEngine engine)

 throws SuspendProcessException

 {

 try

 {

 // get the context in which the process is running

IExecutionContext myContext =

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 11 of 90

engine.getExecutionContext(this);

 while (true)

 {

 Thread.sleep (500);

 // finish after 400 iterations

 if (m_count++ >= 400)

 break;

 // every 4 iterations update our progress

 if (m_count % 4 == 0)

 {

 int progress = myContext.getProgress ();

 if (progress < 100)

 myContext.setProgress (progress + 1);

 }

 // check if we have been cancelled

 synchronized (this)

 {

 if (m_cancelled)

 break;

 }

 // every 120 iterations suspend ourselves so that

// transaction can be committed (though this is

// only for illustrational purposes as we are not //

doing any transactional operations here such as //

changing values of attributes etc)

 if (m_count % 120 == 0)

 {

 throw new SuspendProcessException (true);

 // we will be called soon – see resume

 }

 }

 }

 catch (InterruptedException ie)

 {}

 }

 /**

 * @see IProcess#resume(IExecutionEngine, Object)

 */

 @Override

 public Object resume (IExecutionEngine engine, Object reply)

 throws SuspendProcessException, ExecutionException

 {

 // this is called every 120 iterations

 execute (engine);

 return null;

 }

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 12 of 90

3.1.5 IExecutionEngine interface

The reference to this interface is passed to the execute and resume methods. A process can
use the methods of this interface to communicate with the Aware IM system. The interface has

the methods listed below. Note that most methods throw the following exceptions:

ServerTimeOutException – thrown if there was a call of the service exposed by a remote

service provider, which timed out.

ExecutionException – thrown if there was a run-time error. All changes are discarded.

AccessDeniedException – thrown if there was violation of the access level. All changes

are discarded.

The first parameter of each method is the process that called the method. When calling methods

of IExecutionEngine interface the process component should always pass a reference to

“this” as the first parameter to the method call. This parameter is omitted from the description
below.

1. getExecutionContext (IProcess)

public IExecutionContext getExecutionContext (IProcess process)

This method provides the execution context in which the process is running.

Parameters:
 process – the process whose execution context is required

Returns: the execution context in which the process is running as an instance of the

IExecutionContext interface.

2. createEntity (IProcess, String)

public IEntity createEntity (IProcess parent, String entityName)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method creates new instance of the specified business object. If there are any rules
associated with the business object they are executed.

Parameters:

 entityName – the name of the business object to create

Returns: the created instance of the business object. The attributes are initialized with the

values set by the initialization rules (if any), otherwise the initial values are null.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 13 of 90

3. createEntityFromTemplate (IProcess, IEntityTemplate,
ChangedReference [])

public IEntity createEntityFromTemplate (IProcess parent, IEntityTemplate

template, ChangedReference []

changedRefs)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method creates the new instance of the specified business object from the specified template,

which can be pre-initialized with some values. If there are any rules associated with the business
object they are executed.

Parameters:

template – an instance of the IEntityTemplate interface. The blank instance of

the template can be obtained calling the static method
DomainFactory.createEntityTemplate(IEntityDefinition)

where IEntityDefinition is the definition of the entity being created. This

definition can be obtained from IDomainVersion, which in turn can be obtained from

the execution context of the process (see API of the DomainFactory,

IEntityDefinition and IDomainVersion interfaces provided in the JavaDoc).

changedRefs – should be null

Returns: the created instance of the business object. The attributes are initialized with the
values supplied in the provided template and set by the initialization rules (if any). The
initialization rules will overwrite any values set in the original template.

4. updateEntity (IProcess, IEntity, String [], Object [],

ChangedReference [])

public void updateEntity (IProcess parent, IEntity entity, String []

 changedAttributes, Object [] oldValues,

 ChangedReference [] changedRefs)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method updates the instance of the business object in the database. If there are any rules
associated with the business object they are executed.

Parameters:
 entity – an instance of the business object to write to the database

changedAttributes – an array of the attribute names of the business object that have

been changed (null if unknown).

oldValues – an array of the old values of the changed attributes (null if unknown).

Must be of the same size as the changedAttributes parameter

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 14 of 90

changedRefs – should be null

5. deleteEntities (IProcess, EntityIdAndName [])

public void deleteEntities (IProcess parent, EntityIdAndName [] entities)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method deletes the specified instances of the business objects. If there are references to the

deleted instances anywhere in the database, these references are deleted as well. If the deleted
instance is a parent of some other object, the child object is deleted as well.

Parameters:

 entities – the names and ID’s of the instances to be deleted.

6. getEntity (IProcess, String, Long)

public IEntity getEntity (IProcess parent, String entityName, Long id)

 throws AccessDeniedException, ExecutionException;

This method retrieves the specified instance of the specified business object.

Note: any large binary attributes (of the Binary, Document and Picture types) are not

retrieved by this method – the value of the corresponding attributes will be null. To retrieve the

values of the binary attributes use the getBinaryData method. The getEntity method also

retrieves only single references of the object. To retrieve all references of the object, use

getAllReferences method.

Parameters:
 entityName – the name of the business object to retrieve

 id – the unique id of the instance to retrieve (the unique id is assigned to the instance

automatically by the system when the instance is created)

Returns: the retrieved instance of the business object or null if the instance was not found.

7. getEntities (IProcess, EntityIdAndName [])

public IEntity [] getEntities (IProcess parent, EntityIdAndName []

 entities)

 throws AccessDeniedException, ExecutionException;

This method retrieves the specified instances of the specified business objects.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 15 of 90

Note: any large binary attributes (of the Binary, Document and Picture types) are not

retrieved by this method – the value of the corresponding attributes will be null. To retrieve the

values of binary attributes use the getBinaryData method. . The getEntities method
also retrieves only single references of the object. To retrieve all references of the object, use

getAllReferences method.

Parameters:
 entities – the names and unique id’s of the business object instances to retrieve

Returns: the retrieved instances of the business objects or null if the instances were not found.

8. getBinaryData (IProcess, String, Long, String)

public byte [] getBinaryData (IProcess parent, String entityName, Long id,

String attributeName)

 throws AccessDeniedException, ExecutionException;

This method retrieves the value of the specified binary attribute of the specified instance of the

business object. Normally if an instance of a business object is retrieved using getEntity or

getEntities methods the values of attributes of the Binary, Document or Picture types
are not retrieved. The above method will retrieve the binary value of the specified attribute.

Parameters:
 entityName – the name of the business object to retrieve

 id – the unique id of the instance to retrieve (the unique id is assigned to the instance

automatically by the system when the instance is created)

attributeName – the name of the attribute the value of which is retrieved (must be of

the binary type). For attributes of the Document and Picture types the attribute name
must be specified using the “dot” notation as attributes of these types are complex

attributes consisting of the file name and file data. The file data part of the attribute is
binary:

attributeName.DOCDATA

where attributeName is the name of the attribute of the Document or Picture
type. The returned bytes are the bytes of the document or image.

Returns: the bytes representing the document, image or binary data for the attribute.

9. setBinaryData (IProcess, String, Long, String, byte[])

public void setBinaryData (IProcess parent, String entityName, Long id,

 String attributeName, byte[] data)

 throws AccessDeniedException, ExecutionException;

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 16 of 90

This method sets the data of the specified binary attribute of the specified instance of the business

object. This method allows clearing binary attribute (if “data” is null). Normally if binary data is
provided as part of the entity null is interpreted as "no change" for binary data and therefore it is
impossible to clear binary data as part of entity update. This method allows doing that.

Parameters:
 entityName – the name of the business object to set the data of

id – the unique id of the instance to set the data of (the unique id is assigned to the

instance automatically by the system when the instance is created)

attributeName – the name of the attribute the value of which is set (must be of the

binary type). For attributes of the Document and Picture types the attribute name
must be specified using the “dot” notation as attributes of these types are complex

attributes consisting of the file name and file data. The file data part of the attribute is
binary:

attributeName.DOCDATA

where attributeName is the name of the attribute of the Document or Picture
type. The returned bytes are the bytes of the document or image.

data – the data to set. If “null” the binary data of the attribute is cleard.

10. getAllReferences (IProcess, IEntity, String)

public IEntity [] getAllReferences (IProcess parent, IEntity refOwner,

String refOwnerAttr)

 throws AccessDeniedException, ExecutionException;

This method retrieves all references of the specified instance of the business object referenced by

the specified attribute of the reference type. The method getReferences of the IEntity

interface also returns the references of the business object, so it is possible to retrieve the object

by calling getEntity and then call getReferences method. However, calling the

getEntity or getEntities methods will only retrieve single references and will not

retrieve multiple references. The getAllReferences method, on the other hand, guarantees
that all references of the business object referenced through the specified attribute are retrieved.

Parameters:
 refOwner – the instance of the business object the references of which are retrieved

refOwnerAttr – the name of the attribute of the business object () the references of

which are retrieved (must be of the reference type)

Returns: the instances of the business objects referenced through the specified attribute or

null if no instances are referenced through the specified attribute.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 17 of 90

11. getObjectReferences (IProcess, IEntity, String)

public Vector getObjectReferences (IProcess parent, IEntity refOwner,

String refOwnerAttr)

 throws AccessDeniedException, ExecutionException;

This method is very similar to the getAllReferences method. However, it returns

references as a collection of ObjectReference objects rather than IEntity objects.

ObjectReference is a structure containing an object name and ID. If only names and ID’s

of the references are required calling this method is much more efficient than calling

getAllReferences, which retrieves the values of all attributes.

Parameters:

 refOwner – the instance of the business object the references of which are retrieved

refOwnerAttr – the name of the attribute of the business object the references of

which are retrieved (must be of the reference type)

Returns: the names and ID’s of business objects referenced through the specified attribute as a

vector of the ObjectReference objects or null if no instances are referenced through the

specified attribute.

12. addReferences (IProcess, String, Long, String,

EntityIdAndName [])

public void addReferences (IProcess parent, String refOwnerName, Long

 refOwnerId, String refOwnerAttr,

 EntityIdAndName [] refsToAdd)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method adds the specified references to the specified instance of the business object. There
are two ways references can be added to a business object. The instance of the object can be

obtained using the call to the getEntity or getEntities methods and then references can

be set using the setReferences method of the IEntity interface. However, the

setReferences method requires that all references are set into the business object and

therefore all the existing references must be obtained before adding the new ones. This is, of

course, very inefficient. The addReferences method does not require that the existing

references of the business object are retrieved and allows adding the specified references to the
existing ones.

Parameters:
 refOwnerName – the instance of the business object that references are added to

refOwnerAttr – the name of the attribute of the business object the references of

which are being modified (must be of the reference type)

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 18 of 90

refOwnerId – the unique ID of the instance of the business object that the references

are added to

refsToAdd – the references to be added as an array of business object names and ID’s

13. deleteReferences (IProcess, String, Long, String,

 EntityIdAndName [])

public void deleteReferences (IProcess parent, String refOwnerName, Long

 refOwnerId, String refOwnerAttr,

 EntityIdAndName [] refsToDelete)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

The method is similar to the addReferences method. However, it deletes the specified

references rather than adds them.

Parameters:

 refOwnerName – the instance of the business object that references are deleted from

refOwnerAttr – the name of the attribute of the business object the references of

which are being deleted (must be of the reference type).

refOwnerId – the unique ID of the instance of the business object that references are

deleted from

refsToDelete – the references to be deleted as an array of business object names and

ID’s. If null all existing references of the business object’s instance are deleted.

14. createNotification (IProcess, String)

public INotification createNotification (IProcess parent, String

notificationName)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method creates the specified notification. If there are any rules associated with the creation
of the notification they are executed.

Parameters:
notificationName – the name of the notification to create (the notification with this

name must be configured in the business space version)

Returns: the instance of the created notification

15. executeChildProcess (IProcess, String, IEntity [],

 Boolean)

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 19 of 90

public IProcess executeChildProcess (IProcess parent, String processName,

 IEntity [] parameters,

 Boolean asynchronous)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method starts the specified process as a child of the current process. This method allows
custom process components to start other processes.

Parameters:
processName – the name of the process to start (the business space version must have

the process with this name configured)

parameters – the instances of the business objects representing the process input if it

is declared or null if the process has no input

asynchronous – if true the new process is started in a separate thread.

Returns: the reference to the child process component.

16. executeEntityService (IProcess, String,

 EntityIdentifier, IEntity [],

 String, Boolean)

public INotification executeEntityService (IProcess parent,

 String serviceName,

 EntityIdentifier provider,

 IEntity [] parameters,

 String channelTypeName,

 Boolean asynchronous)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

This method calls the specified service of the specified service provider.

Parameters:

serviceName – the name of the service to call (the service provider must expose the

service)

provider – the name and unique ID of the intelligent business object which provides

the service

parameters – the instances of the business objects representing the service input if it is

required or null if the service requires no input

channelTypeName – the name of the channel through which the service is requested.

If null the service is requested through the default channel of the provider.

asynchronous – if true the service is called in a separate thread.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 20 of 90

Returns: the notification appropriate to the reply type of the called service if the service call
was successful.

17. sendNotification (IProcess, IEntity, INotification,

 String)

public void sendNotification (IProcess parent, IEntity recipient,

 INotification notification,

 String channelTypeName)

 throws ServerTimeOutException, AccessDeniedException, ExecutionException;

Send the specified notification to the specified recipient.

Parameters:
recipient – the instance of the intelligent business object which receives the

notification

notification – the instance of the notification to send to the recipient. This can be

obtained by calling the createNotification method.

channelTypeName – the name of the channel supported by the recipient through

which the notification is sent. If null the notification is sent through the default channel

of the recipient.

18. executeNamedQuery (IProcess, String, Integer, Integer)

public QueryResult executeNamedQuery (IProcess parent, String queryName,

 Integer startRange, Integer span)

 throws AccessDeniedException, ExecutionException;

This method runs the query with the specified name and returns the instances of the business

objects matching the conditions of the query. The query with this name must be configured in the
business space version. The method may return only a subset of found instances as defined by the

startRange and span parameters.

Parameters:

queryName – the name of the query to run

startRange – the number identifying the start of the range of the business object

instances returned by the query (starting with 1). If all instances are to be returned this

parameter must be null.

span – the number of instances of the business objects to return. If all instances are to be

returned this parameter must be null.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 21 of 90

Returns: the instances of the business objects that match the query conditions. These instances

are wrapped in the QueryResult object, which also has the total number of instances in the

system matching the query conditions. Note that this number can be greater than the number of
business object instances returned by the method as the method may return only a subset of

instances matching the conditions (if startRange and span are specified).

19. executeQuery (IProcess, Query, Integer, Integer)

public QueryResult executeQuery (IProcess parent, Query query,

 Integer startRange, Integer span)

 throws AccessDeniedException, ExecutionException;

This method is very similar to the executeNamedQuery method except that it runs the

provided query instead of the configured query. The provided query does not have to exist in the
business space version and may be created by the calling process.

Parameters:

query – the query to run

startRange – the number identifying the start of the range of the business object

instances returned by the query (starting with 1). If all instances are to be returned this

parameter must be null.

span – the number of instances of the business objects to return. If all instances are to be

returned this parameter must be null.

Returns: the instances of the business objects that match the query conditions. These instances

are wrapped in the QueryResult object, which also has the total number of instances in the
system matching the query conditions. Note that this number can be greater than the number of

business object instances returned by the method as the method may return only a subset of

instances matching the conditions (if startRange and span are specified).

20. importData (IProcess, String, String, Integer, Boolean)

public Collection importData (IProcess parent, String entityName,

String importFileName, Integer batchSize,

Boolean validate)

 throws AccessDeniedException, ExecutionException;

This method imports the instances of the specified business object into the system from the

specified file (see also “Export and Import” section in the “Aware IM User Guide”).

Parameters:

entityName – the name of the business object the instances of which are imported

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 22 of 90

importFileName – the full path to the file being imported

batchSize – the number that specifies how many records are imported into the system

before a transaction is committed. The system imports records in batches. Once the batch

is complete the transaction is committed. If something goes wrong with the import of the
subsequent batches so that the import process is aborted, those records that have been

already committed are not affected. The higher the number the faster the processing of
records, however it is also more likely that the whole process fails without writing any
records.

validate – if the value of this parameter is true any rules associated with the

business object being imported are executed. Consequently if there are any records which
trigger the error action (see “Aware IM Rule Language Reference”) they are ignored and

the corresponding business object is not created or modified. Setting this flag to true
slows down the import process considerably, but on the other hand it guarantees that only

valid instances of the business object are imported

Returns: the created or modified instances of the business object as a collection of IEntity

objects if validate flag is true. If validate flag is false null is returned.

21. importRelationships (IProcess, String, String, Integer)

public void importRelationships (IProcess parent, String entityName,

 String importFileName, Integer batchSize)

 throws AccessDeniedException, ExecutionException;

This method imports the relationships of the specified business object into the system from the
specified file (see also “Export and Import Relationships” section in the “Aware IM User

Guide”).

Parameters:
entityName – the name of the business object the relationships of which are imported

importFileName – the full path to the file being imported

batchSize – the number that specifies how many records are imported into the system

before a transaction is committed. The system imports records in batches.

Once the batch is complete the transaction is committed. If something goes wrong with
the import of the subsequent batches so that the import process is aborted, those records

that have been already committed are not affected. The higher the number the faster the
processing of records, however it is also more likely that the whole process fails without
writing any records.

22. exportEntities (IProcess, IEntity [], String,

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 23 of 90

 ExportOptions)

public void exportEntities (IProcess parent, IEntity [] entsToExport,

String exportFileName, ExportOptions options)

 throws AccessDeniedException, ExecutionException;

This method exports the specified instances of the specified business object into the specified file

(see also “Export and Import” section in the “Aware IM User Guide”).

Parameters:
entsToExport – the instances of the business objects to be exported

exportFileName – the full path to the file to export to

options – the export options (whether to export ID’s, relationships, binary attributes

etc).

3.1.6 IExecutionContext interface

There are quite a number of methods exposed by this interface. Most of the methods are of
interest to the system only. The following section only describes those methods that are relevant

to custom process components.

1. getProgress ()

public int getProgress ()

Parameters: none
Returns: the number identifying the current progress of the process in percents.

2. setProgress (int)

public void setProgress (int progress)

This method can be used to set the progress of the custom process component. The system will
use this number when the operator inquires about the progress of the process.

Parameters:

 progress - the number identifying the current progress of the process in percents.

3. getStartupTime ()

public Date getStartupTime ()

Parameters: none

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 24 of 90

Returns: the date and time when the process was started as java.util.Date object.

4. getSuspensionTime ()

public Date getSuspensionTime ()

Parameters: none

Returns: the date and time when the process was last suspended as java.util.Date

object or null if the process was never suspended.

5. getDomainVersion ()

public IDomainVersion getDomainVersion ()

Parameters: none

Returns: the current business space version.

6. getAccessLevel ()

public AccessLevel getAccessLevel ()

Parameters: none

Returns: the access level of the user that started the process.

7. getLoginName ()

public String getLoginName ()

Parameters: none
Returns: the login name of the user that started the process.

8. getTimeout ()

public long getTimeout ()

Parameters: none
Returns: the number of milliseconds that the system will wait before timing out the process

when it is suspended. If the value is –1 the process never times out (this is the default value).

9. setTimeout (long)

public void setTimeout (long timeout)

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 25 of 90

Set the number of milliseconds that the system will wait before timing out the process if it is

suspended.

Parameters:

timeout – the timeout value in milliseconds. If the value is –1 the process never times

out.

3.1.7 IEntity interface

IEntity interface extends IObject interface. IObject interface is the parent to both

IEntity and INotification. It exposes the following methods:

1. getName ()

public String getName ()

Parameters: none
Returns: the name of the business object or notification as configured in the business space

version.

2. getId ()

public long getId ()

Parameters: none

Returns: the unique id of the business object instance (always –1 for notifications). The
unique id is automatically assigned to the business object instance by the system when the
instance is created.

3. getAttributeValue (String)

public Object getAttributeValue (String attributeName)

 throws InvalidParameterException

This method returns the value of the specified attribute. Note: the attribute must not be a

reference. Use the getReferences method to retrieve references.

Parameters:

attributeName – the name of the attribute of the business object or notification the

value of which is returned

Returns: the value of the attribute as Object. The type of the object corresponds to the type of

the attribute. See the Appendix A that provides the mapping between attribute types and Java
types.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 26 of 90

Throws: InvalidParameterException if the specified attribute name does not exist in

the business object or notification

4. setAttributeValue (String, Object)

public void setAttributeValue (String attributeName, Object value)

 throws InvalidParameterException

This method sets the value of the specified attribute.

Note: the attribute must not be a reference. Use the setReferences method to set references.

Parameters:

attributeName – the name of the attribute of the business object or notification the

value of which is set

value - the value of the attribute to set as Object. The type of the object corresponds

to the type of the attribute. See Appendix A that provides the mapping between attribute
types and Java types.

Throws: InvalidParameterException if the specified attribute name does not exist in

the business object or notification

5. deepCopy ()

public IObject deepCopy ();

This method takes a “deep” copy of “this” object.

Parameters: none
Returns: copied business object or notification

6. getReferences (String)

public ObjectReference [] getReferences (String attributeName)

 throws InvalidParameterException

This method retrieves references of the business object or notification. If the business object was

obtained in the first place by the calls to the getEntity or getEntities methods of the

IExecutionEngine interface the getReferences method will always return null for

multiple references (it will always return the only existing reference if the attribute is a single

reference). Use the getAllReferences method in the IExecutionEngine interface to

obtain all multiple references of the business object.

Parameters:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 27 of 90

attributeName – the name of the attribute of the business object or notification the

references of which are returned (must be of the reference type)

Returns: the references as ObjectReference objects or null if no objects are referenced
by the specified attribute.

Throws: InvalidParameterException if the specified attribute name does not exist in

the business object or notification or it is not a reference.

7. setReferences (String, ObjectReference [])

public void setReferences (String attributeName, ObjectReference [] refs)

 throws InvalidParameterException

This method sets references of the business object or notification. Note that if the

updateEntity method of the IExecutionEngine interface is used to update the business

object in the database after setting its references the system will delete any existing references of

the business object and add whatever references are set by the setReferences method. If,

however, the setReferences method sets the value to null and then the updateEntity

method is called, the null value is interpreted by the system as “no change” so no existing

references are deleted. To clear existing references use the deleteReferences method in the

IExecutionEngine interface.

Parameters:

attributeName – the name of the attribute of the business object or notification the

references of which are being set (must be of the reference type)

refs - the references being set.

Throws: InvalidParameterException if the specified attribute name does not exist in

the business object or notification or it is not a reference.

There are a number of methods that are specific to the IEntity interface as opposed to the

IObject interface, however, these are mostly used by the system are not relevant to custom
process extensions.

3.1.8 IEntityTemplate interface

IEntityTemplate represents the instance of the business object before it has been added to

the database. As such it does not have the unique ID and some other attributes assigned to the

instance of the business object automatically by the system. The main usage of this interface is to

set initial values of an instance when using the createEntityFromTemplate method in the

IExecutionEngine interface.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 28 of 90

The interface exposes getName, getAttributeValue, setAttributeValue,

getReferences and setReferences methods. Their signatures and purpose is identical to

the corresponding methods in the IEntity interface.

3.1.9 INotification interface

The INotification interface extends the IObject interface and therefore shares most

methods with the IEntity interface. Some specific methods are described below (these
methods are not relevant to process extensions, however, they may be helpful when writing

custom channels – see section 4.1)

1. getServiceStatus ()

public int getServiceStatus ()

This method returns the status of service request. Valid values are:
 SERVICE_STATUS_SUCCESS;

 SERVICE_STATUS_WAITING;

 SERVICE_STATUS_FAILURE;

Parameters: none

Returns: an integer indicating the service status.

2. getMessage ()

public String getMessage ()

Parameters: none

Returns: any message associated with the notification (for example, the error message if the

service request failed) or null if no message is associated with the notification.

4 Adding custom channels

Communication between external entities, such as other software systems and hardware devices
(which are modeled in Aware IM as intelligent business objects) and Aware IM is performed
through channels. A channel represents a media through which messages are sent between

external systems and hardware devices (collectively called here as “external parties”) and Aware

IM. A channel is responsible for converting messages into the format that can be understood by

the Aware IM software on one end and the external party on the other end. There can be one-way
or two-way channels. In a one-way channel messages are only sent in one direction – from Aware

IM to the external party or from the external party to Aware IM. In a two-way channel messages

are sent in both directions.

From Aware IM point of view there are only two types of messages – service requests and
notifications. Service request is a request for execution of a particular service. The external party

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 29 of 90

being an intelligent business object may expose a number of services that can be requested by

Aware IM. Similarly the current business space version in Aware IM may expose a number of
services that can be requested by the external party. The service requestor may expect a particular
reply to the service as declared in the definition of the service.

A notification, on the other hand, represents just a piece of information that is sent to the external

party or to Aware IM (the business space version in Aware IM may contain rules which define
how different notifications are handled). It is up to a receiver of the notification to decide how it
will react to this information or whether it will react at all. Generally no reply to the notification

is expected from the receiver.

A channel therefore must translate the service request or notification message that is sent by
Aware IM to the external party into whatever format the external party understands. Similarly a
channel has to translate a message sent by the external party into the service request or

notification message that can be understood by Aware IM.

Note that if an external party is sending service requests to Aware IM it must first log into Aware

IM as a particular user (an intelligent business object representing the external party must be a

member of the SystemUsers business object group), otherwise the service request will be sent

on behalf of a “guest” user. Sending notifications to Aware IM, on the other hand, does not
require logging in.

There are a number of predefined channels that Aware IM comes with, such as the E-mail

channel, the SOAP channel and others (see the “Defining Intelligent Business Objects” section in

the “Aware IM User Guide”). If your application connects to external software systems or
hardware using protocols that are not supported by Aware IM out-of-the-box, you are likely to

need to write your own custom channel that will connect your Aware IM system with the
required software system or a hardware device.

The following section describes what is involved in adding a new custom channel to Aware IM.

To add a new custom channel to Aware IM follow the steps below:
1. Write the code for the component that will handle communication between Aware IM and

your software system or a hardware device (see section 4.1 for details)

2. Write the code for the component that describes the capabilities of the new channel – this

component must implement the IChannelType interface (see section 4.1.2 for details).

3. If your channel has properties that need to be controlled via the user interface in the
Configuration Tool, write the code for the component that implements this user interface (see

section 4.3 for details).
4. Compile the source code of your components and package them in a jar file(s). Make sure

that the jar file is referenced in the CLASSPATH (see section 2)

5. Add the definition of the new channel to the BASServer.props file located in the BIN

directory of your Aware IM installation. You have to add a line that provides the fully
qualified name of the component that you wrote in step 2. The name of the property must

start with the ChannelType prefix and the value is the fully qualified name of the
component. For example:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 30 of 90

ChannelTypeMail=com.bas.basserver.channels.EmailChannelType

If everything has been done correctly the name of the new channel must appear in the list of

channels available for intelligent business objects in the Intelligence tab of the Business Object
Property Editor (see “Defining Intelligent Business Objects” section in the “Aware IM User

Guide”)

4.1 Implementing channel’s Source and Sink

The first step that is required to add a custom channel to Aware IM is to write the component(s)
that handle communication between Aware IM and the external software system or hardware

device. In order to write the code for such components it is important to understand the
architectural framework that Aware IM uses to communicate with an external software system or
device (“external party”).

Aware IM incorporates the openadaptor framework written by Dresdner Kleinwort

Wasserstein to handle communication with external parties. This framework abstracts the process
of sending messages between systems. The source of the message is abstracted in a component

called Source and the destination of the message is abstracted in the component called Sink. Thus
messages are generated by Source and travel to the corresponding Sink.

If communication with the external party requires that messages be sent from Aware IM to the
external party the specific Sink needs to be implemented (Aware IM framework will

automatically provide the corresponding Source). If communication requires that messages be
sent from the external party to Aware IM the specific Source needs to be implemented (Aware

IM framework will automatically provide the corresponding Sink).

Messages that float between Aware IM and external party represent arrays of DataObject’s.

DataObject is the class that allows defining any number of attributes of different types and

provides generic access to them - very much like the IEntity interface (in fact IEntity is a

wrapper around DataObject). DataObject exposes the getAttributeValue and

setAttributeValue methods that allow access to the values of its attributes.

Aware IM sends DataObject’s of some specific structure to the external party and it expects

DataObject’s of this structure from the external party. As explained in the previous section

this structure implies that there are only two forms of requests that can be sent between Aware

IM and the external party – service requests and notifications.

Aware IM provides two utility classes MessageBuilder and MessageInterpreter that

allow a programmer to easily create or read messages representing service requests and
notifications without knowing too many details about the underlying structures of

DataObject’s and its attributes.

To summarize a programmer has to do the following:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 31 of 90

1. When writing a Sink the service request or notification from Aware IM has to be translated

into the protocol of the external party and sent to this party.
2. When writing a Source the message in the external party’s format has to be translated into the

standard service request or notification and sent to Aware IM.

The details of this process are described in the sections below.

4.1.1 Writing a Sink

To write a custom Sink follow the steps below:

1. Inherit the Sink from the AbstractSimpleSink class.

2. If necessary override init method to provide the Sink-specific initialization (if there’s any)

– this method is called once when the Sink is initialized. The Sink-specific properties would

have been entered by the user in the Configuration Tool (see also section 4.3)
3. You must override the following method to provide your own handling of messages sent from

Aware IM:

 public void processMessage (Message msg) throws PipelineException;

 You can translate messages from Aware IM using the following techniques:

a) get the array of DataObject’s from the message:
DataObject [] dobs = msg.peekDataObjects ();

b) use MessageInterpreter class to interpret the message (see also 4.1.3):
MessageInterpreter mi = new MessageInterpreter (dobs);

INotification notif = mi.getNotification (); or

String serviceName = mi.getServiceName ();

As an example you can see the code snippet below that implements the Sink that sends outgoing
e-mails from Aware IM. Note that this code is for illustration purposes only and certain details

such as e-mail construction and sending and error handling are omitted.

public class EmailSink extends AbstractSimpleSink

{

 private String m_mailHost = null;

 private Session m_session = null;

 private String m_fromAddress = null;

/** Initialize the sink. Mail host and ‘from address’ properties are **

specified in the user interface */

 public void init (String name, Properties props, String prefix,

 Controller controller)

 throws IbafException

 {

 try

 {

 super.init(name, props, prefix, controller);

 m_mailHost = props.getProperty (prefix+"."+“MAIL_HOST”);

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 32 of 90

 if (m_mailHost == null)

throw new IbafException ("Mail host property for

outgoing e-mails is not specified.");

 Properties sessionProps = System.getProperties ();

 sessionProps.put ("mail.smtp.host", m_mailHost);

m_fromAddress = props.getProperty (prefix+"."+

“MAIL_FROM_ADDRESS”);

 m_session=Session.getDefaultInstance(sessionProps,null);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 throw new IbafException(e.toString());

 }

 }

 /** Message handling method – must be provided */

 public void processMessage (Message msg)

 throws PipelineException

 {

 String subject = null, toAddress = null;

 String sentDateStr = null;

 try

 {

 DataObject [] dobs = msg.peekDataObjects ();

 // get all message parameters from data objects

 MessageInterpreter mi = new MessageInterpreter (dobs);

 // get e-mail address from channel values

 DataObject chvDob = mis.getChannelValues ();

 if (chvDob == null)

 return; // ignore the message

 try

 {

 toAddress = (String) chvDob.getAttributeValue

(EMAIL_ADDRESS);

 }

 catch (InvalidParameterException ipe)

 {}

 if (toAddress == null)

 return; // ignore the message

 INotification notif = mis.getNotification ();

 if (notif == null)

 return; // ignore the message

 // we expect notification of a certain structure – it

 // must have “BODY” and SUBJECT attributes defined

 String body = null;

 try

 {

 body = (String) notif.getAttributeValue

(EMAIL_BODY_ATTR);

 }

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 33 of 90

 catch (InvalidParameterException ipe)

 {}

 if (body == null)

 return; // ignore the message

 // subject is optional

 try

 {

 subject = (String) notif.getAttributeValue

(EMAIL_SUBJECT_ATTR);

 }

 catch (Exception e)

 {}

 if (subject == null)

 subject = "";

// create MAPI e-mail message

MimeMessage email = createEmail (body, subject,

 toAddress);

 if (email != null)

 {

 // send e-mail using MAPI

 sendEmail (email, toAddress, new Date ());

 }

 }

 catch (Exception e)

 {}

 }

 /** Send the e-mail using MAPI. A lot of details are omitted **/

 private boolean sendEmail (MimeMessage email, String toAddress,

 String sentDate)

 {

 try

 {

 Transport.send (email);

 }

 catch (Exception e)

 {}

 return true;

 }

 /** Create e-mail message using MAPI. Details are omitted

 */

 private MimeMessage createEmail (String body, String subject, String

 toAddress, Date sentDate)

 throws Exception

 {

 MimeMessage mailMessage = new MimeMessage (m_session);

 if (m_fromAddress != null)

 mailMessage.setFrom (InternetAddress.parse

 mailMessage.setRecipients (javax.mail.Message.RecipientType.TO,

 InternetAddress.parse (toAddress,

 false));

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 34 of 90

 mailMessage.setSubject (subject);

 mailMessage.setSentDate (sentDate);

 return mailMessage;

 }

4.1.2 Writing a Source

Before writing a Source you need to decide the type of Source that will receive messages from

your software system or a hardware device. Three types of Sources are supported by the

openadaptor framework:

1. Polling - the Source of this type will periodically poll a resource looking for data and

messages that need to be processed or sent, e.g. a database, a file system or queue-based
middleware.

2. Listening - the Source of this type will wait for a connection, establish a connection and

listen, e.g. a socket.
3. Callback - the Source of this type will register for events and receive call-backs, e.g.

publish/subscribe middleware.

You must decide which is the most appropriate type of Source for your situation. Depending on

which implementation you choose, you will need to implement different methods.

After you decide which Source type you will use follow the steps below:

1. Inherit your class implementing the Source from the AbstractSimpleSource class.

2. Override the init method to set the Source type and/or initialise the Source with some

specific properties. The Source-specific properties would have been entered by the user in the
Configuration Tool (see also section 4.3) The type of the Source is set using the following

method:

 setSourceType(POLL_SOURCE); or

 setSourceType(LISTEN_SOURCE); or

 setSourceType(CALLBACK_SOURCE); or

3. Depending on the Source type override the following methods:

 For polling Source -

 public DataObject[] sourcePoll() throws IbafException

This method should return an array of DataObject’s (or null if there is no data to

process at the moment).

 For listening Source -

 public void sourceListen() throws IbafException

This method should call the following method when it has some DataObject’s to process:
 sourceProcess(DataObject[] dobs)

 For call-back Source –

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 35 of 90

You will need to implement the third party call-back method. This method should call the

following method when it has some DataObject’s to process:
 sourceProcess(DataObject[] dobs)

In the methods above you need to construct the appropriate DataObject’s, which will be

delivered to Aware IM by the framework. To construct the DataObject’s you can use the

MessageBuilder class as shown in the example below.

4. You should implement the following method to perform any necessary "start up", such as

establishing connections, registering call-backs, etc:
 public void sourceStartUp() throws IbafException

5. You should implement the following method to perform necessary "clean up", such as
destroying connections, releasing resources, etc:

 public void sourceCleanUp() throws IbafException

As an example you can see the code snippet that implements the Source that handles e-mails

coming to a mailbox and sends them as notifications to Aware IM. Note that this code is for
illustration purposes only and certain details are omitted.

public class EmailSource extends AbstractSimpleSource

{

 private String m_mailHost;

 private String m_userName;

 private String m_password;

 private Session m_session;

 private Store m_store;

 private Folder m_inbox;

 /** Initializes the source.

 * Mandatory properties

 * MAIL_HOST_PROP name of the mail host, e.g. mail.optus.com

 * MAIL_USER_PROP name of the user

 * MAIL_PASSWORD_PROP credentials of the user

 * @exception IbafException If initialization fails.

 */

 public void init(String name, Properties props, String prefix,

Controller controller)

 throws IbafException

 {

 try

 {

 super.init(name, props, prefix, controller);

 // set the type of the source!

 setSourceType (CALLBACK_SOURCE);

// get different settings that would have been entered// //

by the user in the Configuration Tool

 m_mailHost = props.getProperty (prefix+"."+MAIL_HOST);

 if (m_mailHost == null)

 throw new IbafException ("Mail host property for

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 36 of 90

incoming e-mails is not specified.");

 m_userName = props.getProperty (prefix+"."+MAIL_USER);

 if (m_userName == null)

 throw new IbafException ("User name property is not

specified");

 m_password = props.getProperty (prefix + "." +

 MAIL_PASSWORD);

 if (m_password == null)

 throw new IbafException ("Password property is not

specified");

 Properties settings = System.getProperties ();

 settings.put ("mail.smtp.host", m_mailHost);

 settings.put ("mail.store.protocol", “pop3”);

 m_session = Session.getInstance (settings, null);

 m_store = m_session.getStore ();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 throw new IbafException (e.getMessage ());

 }

 }

 public void sourceStartUp()

 throws IbafException

 {

 super.sourceStartUp ();

 // try to connect to the remote host

 try

 {

 connect ();

 }

 catch (Exception me)

 {

 }

 }

 public void sourceCleanUp()

 throws IbafException

 {

 super.sourceCleanUp ();

 // close everything

 if (m_inbox != null)

 {

 synchronized (m_inbox)

 {

 try

 {

 m_inbox.close (false);

 }

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 37 of 90

 catch (Exception e)

 {}

 }

 }

 if (m_store != null)

 {

 try

 {

 m_store.close ();

 }

 catch (Exception e)

 {}

 }

 }

/** connect to the remote host and register our callback function */

 private void connect () throws Exception

 {

 try

 {

 m_store.connect (m_mailHost, 110, m_userName,

 m_password);

 }

 catch (Exception se)

 {}

 // Open a Folder

 try

 {

 m_inbox = m_store.getFolder ("INBOX");

 }

 catch (Exception e)

 {

 throw new IbafException (e.getMessage ());

 }

 // Register our call back method with the third party API!!

 synchronized (m_inbox)

 {

 m_inbox.addMessageCountListener(new MessageCountAdapter()

 {

 public void messagesAdded (MessageCountEvent ev)

 {

 gotMessage (ev);

 }

 });

 }

 }

 // This is a call-back method that creates data objects */

 private void gotMessage (Message m)

 {

 // create notification of a particular structure

INotification notif = DomainFactory.createNotification

(DomainFactory.createIncomingEmailNotification ());

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 38 of 90

// set attribute values

 try

 {

 notif.setAttributeValue (INCOMING_EMAIL_MAIL_HOST,

 m_mailHost);

 notif.setAttributeValue (INCOMING_EMAIL_USER_NAME,

 m_userName);

 // etc…

 // using MessageBuilder to construct required data

// objects

 MessageBuilder mb = new MessageBuilder ();

 DataObject [] dobs = mb.addNotification (null, notif);

 // send the data objects to Aware IM!

 sourceProcess (dobs);

 }

 catch (Exception e)

 {

 // some error handling

}

 }

4.1.3 Handling replies to service requests

When a service of the external party or Aware IM has been requested the service provider may

send a reply. The reply is sent as a special notification (called the service reply notification). This

notification implements the INotification interface and exposes methods that allow

checking the status of the service request and retrieve error message if there was any.

If Aware IM requests services of external parties, replies from the external parties need to be
delivered back to Aware IM. Rather than write the Source that would do this it is possible to use
the special version of a Sink that would not only deliver service requests to the external party but

also send the immediate replies back to Aware IM.

Rather than extending AbstractSimpleSink class such a Sink must extend the

AttachedReplySink class. AttachedReplySink has the Source, which Aware IM

automatically attaches to the Sink when Sources and Sinks are constructed. The only extra

functionality that the Sink extending AttachedReplySink has to provide is to feed the reply

to the attached Source when the reply becomes available – this will guarantee that the reply will

be delivered to Aware IM. Feeding reply to the source is achieved by calling the

feedToSource method of AttachedReplySink passing it the DataObject’s as

required by the Source.

The message fed to the source must contain the service reply notification. The service reply
notification can be constructed calling the static method

INotification DomainFactory.createServiceReplyNotification

(InotificationDefinition definition, int serviceStatus,

 String errorMessage);

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 39 of 90

where definition must correspond to the structure of the reply declared for the requested

service (or null if a “standard” reply has been declared), serviceStatus is the constant

described in the getServiceStatus method of the INotification interface and

errorMessage is the message describing the error if service failed.

Once the notification has been created it can be converted to DataObject’s using the

MessageBuilder class and fed to the source. Here is the snippet of the code illustrating this:

public void processMessage (Message msg)

{

 // call the service here

 // …

 // construct service reply notification and feed it back to Aware IM

 INotification serviceReply = DomainFactory.createServiceReplyNotification

(null, INotification.SERVICE_STATUS_SUCCESS, null);

 MessageBuilder mb = new MessageBuilder ();

 feedToSource (msg.peekDataObjects (),

 mb.addNotification (null, serviceReply));

}

4.1.4 MessageInterpreter class

The MessageInterpreter class can be used to obtain the notification or service name and

parameters from a message sent by Aware IM to an external party. The following public methods
can be used:

1. MessageInterpreter (DataObject [])

public MessageInterpreter (DataObject [] message)

Constructor. Construct MessageInterpreter from the array of DataObject’s representing the

message sent by Aware IM to an external party.

Parameters:

message – an array of DataObject’s sent by Aware IM. Usually obtained by calling

peekDataObjects method of the Message class.

2. getNotification ()

public INotification getNotification ()

Retrieve the notification from the message.

Parameters: none

Returns: the notification contained in the message or null if the message represents a
service request.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 40 of 90

3. getServiceName ()

public String getServiceName ()

Retrieve the name of the requested service from the message.

Parameters: none

Returns: the service name of the requested service or null if the message represents a
notification.

4. getServiceParameters ()

public Collection getServiceParameters ()

Retrieve parameters of the requested service from the message.

Parameters: none

Returns: parameters of the requested service as a collection of IEntity objects or null

if the message represents a notification or if the service requires no parameters.

5. isServiceRequest ()

public boolean isServiceRequest ()

Parameters: none

Returns: true if the message represents a service request or false if the message

represents a notification.

6. getChannelValues ()

public DataObject getChannelValues ()

Retrieve the data object containing values specific to the receiver of the message. It may happen
that the same channel is used to send messages to different intelligent business objects (for
example, an e-mail channel may be used to send e-mails to different recipients). If this is the case

the message itself must contain the values, which uniquely identify the recipient (in the e-mail

case it is the e-mail address of the recipient). The method getChannelValues allows

retrieving values identifying the recipient from the message (see also section 4.1.2)

Parameters: none
Returns: DataObject containing the values specific to the recipient – the names of the
attributes contained in the DataObject are channel-specific (see also section 4.1.2).

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 41 of 90

4.1.5 MessageBuilder class

The MessageBuilder class allows creating DataObject’s in the format that Aware IM
understands so that a message can be sent to Aware IM. The following public methods can be

used:

1. MessageBuilder ()

public MessageBuilder ()

Constructor.

Parameters: none

2. addServiceRequest (String, String, Object [])

public DataObject [] addServiceRequest (String componentName, String

 serviceName, Object [] parameters)

This method constructs a message representing a service request

Parameters:

componentName – this should always be null

serviceName – the name of the service to call (the service with this name must be

exposed by the service provider). If a message is sent to Aware IM the name of the

service is the name of one of the methods exposed by the

IExecutionEngineServices interface (see JavaDoc API)

parameters – the parameters of the service as an array of IEntity objects or null

if the service does not require any parameters. If a message is sent to Aware IM the
parameters must correspond to the methods exposed by the

IExecutionEngineServices interface (see JavaDoc API)

Returns: an array of DataObject’s representing the message that can be sent to Aware IM.

3. addNotification (EntityIdentifier, INotification)

public DataObject [] addNotification (EntityIdentifier receiver,

 INotification notification)

This method constructs a message representing a notification

Parameters:

receiver – this should always be null

notification – the notification to be sent

Returns: an array of DataObject’s representing the message that can be sent to Aware IM.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 42 of 90

4.2 Implementing Channel Type component

The next step after writing the channel-specific Sources and Sinks is to write a class that

implements the IChannelType interface. The implementation of the following methods must

be provided:

1. getName ()

public String getName ()

This method must return the unique name of the channel within the Aware IM system. This is the

name that can be used by the executeEntityService and sendNotification methods

of the IExecutionEngine interface and the REQUEST SERVICE and SEND actions of the

Rule Language (see “Aware IM Rule Language Reference”). This name is for system purposes
only – it is not displayed in the list of available channels of the intelligent business object in the

Configuration Tool.

2. getExternalName ()

public String getExternalName ()

This method must return the name by which the channel will be known to configurators. This

name is displayed in the list of available channels of the intelligent business object. This name is
not used by the system in any other way.

3. getOutputSinkClassName ()

public String getOutputSinkClassName ()

This method must return the fully qualified name of the Sink that handles communication with

the external software system or device (see also section 4.1). If messages are never sent from

Aware IM to the external software system or device (only received), null should be returned.

4. getInputSourceClassName ()

public String getInputSourceClassName ()

This method must return the fully qualified name of the Source that handles communication with

the external software system or device (see also section 4.1). If messages from the external

system or device are never received (only sent to), null should be returned.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 43 of 90

5. getChannelSettingsEditor ()

public String getChannelSettingsEditor ()

This method must return the fully qualified name of the component that will provide the user
interface to edit the channel-specific properties (see also section 4.3). If there are no channel-

specific properties that need to be specified by the user, null should be returned.

6. getIntelligenceTypeApplicability ()

public int [] getIntelligenceTypeApplicability ()

This method must return those types of intelligent business object that the channel is applicable

for. For example, the SOAP or Sockets channel is not applicable to business objects with the

Human intelligence and the E-mail channel is not applicable to Devices. The constants

specifying possible intelligence types are available in the IEntityDefinition interface.

They are:

 INTELLIGENCE_BUSINESS – AWARE IM software system;

 INTELLIGENCE_HUMAN – human being;

 INTELLIGENCE_DEVICE – hardware device;

 INTELLIGENCE_SYSTEM – software system (non Aware IM)

At least one intelligence type must be returned.

7. multiUser ()

public boolean multiUser ()

This method must return true if communication with several intelligent business objects is

possible through the channel. In this case a message sent through the channel must identify the

recipient of the message. For example, the E-mail channel allows communicating with several

recipients (a message contains an e-mail address of the recipient) whereas a dedicated channel
handling the protocol specific to some software system is probably not multi-user.

If this method returns true intelligent business objects communicating through this channel

must have a certain attribute defined (such as an e-mail address). When the message is sent to the
recipient through the channel Aware IM automatically gets the current value of this attribute

from the instance of the business object and writes it into the message. See also the

getChannelValues method in the MessageInterpreter class and the

getReceiverEntityAttribute method below.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 44 of 90

8. getMessageValues ()

public DataObject getMessageValues (IchannelTypeCallback callback)

This method is called when a notification is sent to an intelligent business object. The method is
supposed to return the values that are specific to the communication with this particular instance
of the object – for example, an e-mail address of this instance. The method can use a callback

interface to get the instance of the object and the instance of the SystemSettings object, like so:

IEntity intelligentEntity = callback.getEntity ();

IEntity systemSettings = callback.getSystemSettings ();

The method is supposed to return the data object containing specific values, or null if none are

required. As an example, take a look at what the e-mail channel does:

 public DataObject getMessageValues (IChannelTypeCallback callback)

 {

 IEntity entity = callback.getEntity ();

 if (entity == null)

 return null;

 try

 {

 String emailAddr = (String) entity.getAttributeValue

(CommonConstants.EMAIL_ADDRESS_ATTR);

 SDOType dobType = new SDOType ("EmailChannelEmailValues");

 dobType.addAttribute (CommonConstants.EMAIL_ADDRESS_ATTR,

SDOType.STRING);

 DataObject dob = new SimpleDataObject (dobType);

 dob.setAttributeValue (CommonConstants.EMAIL_ADDRESS_ATTR,

emailAddr);

 return dob;

 }

 catch (Exception e)

 {

 System.err.println ("Unable to read e-mail address in object

" + entity.getName ());

 }

 return null;

 }

9. getDefaultChannelSettings ()

public Properties getDefaultChannelSettings ()

This method must return the properties that will be used by default for business objects
communicating through the channel. The non-null value should generally be returned if there are

settings for the channel that are editable by the user in the Configuration Tool. The returned

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 45 of 90

values will be used to initialize the channel settings in the user interface. The specific names of

the properties are up to the channel to define – as long as the same names are used by the
Channel Settings Editor and in the initialization of the corresponding Sources and Sinks – see

sections 4.3 and 4.1). If the channel does not support any settings null should be returned. If

the channel settings are supported but the initialization with blank values is required, the blank
Properties object should be returned.

10. getSourceSettings ()

public Properties getSourceSettings (Properties channelSettings)

This method extracts the channel settings specific only to the Source supported by the channel

from the combined settings that has properties of both Sink and Source. This may only be
relevant if for whatever reason the Source cannot use the combined channel settings.

Parameters:

channelSettings – the channel settings prepared by the Channel Settings Editor that

contain the settings for both Sink and Source

Returns: the properties that only have the settings specific to the Source. If this is not relevant

the original settings may be returned.

11. getSinkSettings ()

public Properties getSinkSettings (Properties channelSettings)

This method extracts the channel settings specific only to the Sink supported by the channel from
the combined settings that has properties of both Sink and Source. This may only be relevant if
for whatever reason the Sink cannot use the combined channel settings.

Parameters:

channelSettings – the channel settings prepared by the Channel Settings Editor that

contain the settings for both Sink and Source

Returns: the properties that only have the settings specific to the Sink. If this is not relevant the
original settings may be returned.

12. supportsServiceDiscovery ()

public boolean supportsServiceDiscovery ()

Aware IM supports service discovery mechanism – it may send a special request through the
channel to find out which services are supported by an intelligent business object. The

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 46 of 90

supportsServiceDiscovery method is supposed to return whether it supports the service

discovery mechanism (for custom channels it should return false).

Parameters: none

Returns: true if services can be discovered through this channel

4.3 Implementing Channel Settings Editor

If a channel supports the specific settings that need to be specified by the user in the
Configuration Tool a Channel Settings Editor needs to be written (the fully qualified name of the

editor must be returned by the class implementing IChannelType interface – see section

 4.1.2). The Channel Settings Editor is the class implementing the

IChannelSettingsEditor interface.

The following methods must be implemented:

1. startEditing (int, java.awt.Component, Properties, boolean)

public Properties startEditing (int intelligenceType, java.awt.Component

 parent, Properties initialSettings, boolean

 viewOnly) throws Exception

This method is called when the user presses the Settings button to start editing the settings

specific to the channel. The method is supposed to invoke the user interface (for example, a
dialog) that would show the initial values of the channel settings and let the user edit these

settings.

Parameters:

intelligenceType – the intelligence type of the business object for which the

channel is configured. Possible values are specified in the

getIntelligenceTypeApplicability method of the IChannelType

interface.

parent – GUI component that should be the parent of the dialog invoked by this

method.

initialSettings – the current values of the channel settings. When the

Configuration Tool is started they are initialized with the values returned by the

getDefaultChannelSettings method of the IChannelType interface and then

they are set to the return of this method in each editing session.

viewOnly – if this flag is true the editor is not supposed to let the user modify any of the

settings – all values must be read-only.

Returns: channel settings after they have been edited by the editor.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 47 of 90

2. validateSettings (Properties, int)

public void validateSettings (Properties settings, int intelligenceType)

 throws Exception

This method is called when changes to the business object (which include changes to the
channels) are committed. The editor is supposed to validate the settings and throw the exception

with the appropriate message if the settings are invalid. The validation should happen during
editing as well, however, this method may be useful when the editor was never invoked by the

user in the first place so that the default settings are committed. The default settings for the
channel, however, may not be complete and need validation.

Parameters:

intelligenceType – the intelligence type of the business object for which the

channel is configured. Possible values are specified in the

getIntelligenceTypeApplicability method of the IChannelType

interface.

settings – the current values of the channel settings to be validated.

Throws: the exception if channel settings are invalid.

Note: If you want Aware IM to build the channel with the intelligent business object when the

Aware IM server starts up so that Aware IM receives notifications from the business object, set
the value of CommonConstants.CHANNEL_SETTINGS_BUILD_NOTIF_CHANNEL to be “true” in

the channel settings.

Below is an example of the Channel Settings Editor that edits the settings of the E-mail

channel:

public class EmailSettingsEditor implements IChannelSettingsEditor

{

 public EmailSettingsEditor()

 {}

 public Properties startEditing(

 int intelligenceType,

 Component parent,

 Properties initialSettings,

 boolean viewOnly)

 throws Exception

 {

 String hostServer = null;

 String fromAddress = null;

 String userName = null, password = null;

 if (initialSettings != null)

 {

 hostServer = initialSettings.getProperty (MAIL_HOST);

 fromAddress = initialSettings.getProperty

(MAIL_FROM_ADDRESS);

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 48 of 90

 userName = initialSettings.getProperty

(CHANNEL_SETTINGS_USER_NAME);

 password = initialSettings.getProperty

(CHANNEL_SETTINGS_PASSWORD);

 }

 EmailSettingsDlg dlg = null;

 if (parent instanceof Frame)

 {

 dlg = new EmailSettingsDlg ((Frame) parent, hostServer,

fromAddress, userName,

 password, viewOnly);

 }

 else if (parent instanceof Dialog)

 {

dlg = new EmailSettingsDlg ((Dialog) parent, hostServer,

fromAddress, userName,

 password, viewOnly);

 }

 dlg.show ();

 if (dlg.getReturnStatus () != EmailSettingsDlg.RET_OK)

 return null;

 Properties props = new Properties ();

 props.setProperty (MAIL_HOST, dlg.getHostName ());

 props.setProperty (MAIL_FROM_ADDRESS, dlg.getFromAddress ());

 props.setProperty (CHANNEL_SETTINGS_USER_NAME,

 dlg.getUserName());

 props.setProperty (CHANNEL_SETTINGS_PASSWORD,

 dlg.getPassword());

 return props;

 }

 public void validateSettings (Properties settings, int

intelligenceType)

 throws Exception

 {

 String hostServer = null;

 String fromAddress = null;

 if (settings != null)

 {

 hostServer = settings.getProperty (MAIL_HOST);

 fromAddress = settings.getProperty (MAIL_FROM_ADDRESS);

 }

 if (hostServer == null || hostServer.length () == 0)

 throw new Exception ("Mail host name for e-mail channel

is not specified");

 if (fromAddress == null || fromAddress.length () == 0)

 throw new Exception ("Mail 'from' address for e-mail

channel is not specified");

 }

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 49 of 90

5 Adding function libraries

This section describes what programmers have to do to add new function libraries to Aware IM.

Function libraries contain functions that can be used in the Rule Language (see “Aware IM Rule

Language Reference”). Aware IM includes some standard function libraries, such as the Date
Function Library and Maths Function Library, which contain functions that work with date/time

as well as some standard mathematical functions. You can find the complete list of functions
supported by Aware IM in the “Aware IM Rule Language Reference”. These functions should be
sufficient for most standard needs. However in certain cases it may be necessary to provide new

functions – for example, functions that perform calculations in different mathematical areas,
some non-standard processing of strings etc.

Note that unlike processes functions are not supposed to communicate with the rest of the Aware

IM system – they are not supposed to change attributes of business objects, update objects in the

database etc. Functions are only supposed to perform calculations and return the result.

Functions are organized in libraries. The grouping of functions in a library is up to the designer of
the library. The name of the function must be unique across all libraries, so it is generally a good
idea to start the name of the function with a prefix uniquely identifying the library that the

function belongs to.

To add a new function library to Aware IM follow the steps below:

1. Write the code for the component that will implement functions of the library (see section 5.1

for details)
2. Compile the source code of your function library component and package it in a jar file(s).

Make sure that the jar file resides in the AwareIM/CustomJars directory (see section 2)

3. Add a definition of the new function library to the BASServer.props file located in the

BIN directory of your Aware IM installation. You have to add a line that provides the fully

qualified name of the function library component. The name of the property must start with

the FunctionLibrary prefix and the value must be the fully qualified name of the

component. For example:

FunctionLibraryStatistics=com.mypackage.StatisticsLibrary

If everything has been done correctly the name of the new functions must appear in the list of
functions displayed by the Rule Language Context Assistant (see “Context Assistant” section in
the “Aware IM User Guide”)

5.1 Implementing function library

To implement a function library you need to write a class that implements the

IFunctionLibrary interface. The implementation of the following methods must be
provided:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 50 of 90

1. getName ()

public String getName ()

This method must return the name of the library. The name must be unique within the Aware IM
system.

Parameters: none

Returns: the name of the library.

2. hasFunction (String, int)

public boolean hasFunction (String functionName, int paramNmb)

This method must return true if the library contains the function with the specified name and
number of parameters. Aware IM will call this method to find the library responsible for the

calculation of a particular function referenced in a rule.

Parameters:

functionName – the name of the function

paramNmb – the number of function parameters

Returns: true if the function with the specified name and number of parameters is supported

by the library, false otherwise.

3. getAvailableFunctions ()

public FunctionDescription [] getAvailableFunctions ()

This method must return all functions supported by the library as an array of structures containing
the function name and the short description of what the function does.

Parameters: none
Returns: an array of structures containing the function name and the short description of
what the function does. At least one function description must be returned.

4. calculate (String, Object [], INodeHelper)

public Object calculate (String functionName, Object [] parameters,

 INodeHelper helper)

This method is what the function is all about – it performs the required calculation and returns the
result.

Parameters:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 51 of 90

functionName – the name of the function in the library that needs to be calculated

parameters – the values of function parameters as specified in a rule where the

function is used. The given array contains Java objects corresponding to different attribute

types (String, Integer, DateHolder etc – see a complete list in the Appendix A)

helper – a call-back interface. Should not be used by custom function libraries.

Returns: the result of the calculation as a Java object of the type corresponding to the attribute
types – see Appendix A. If the function value cannot be calculated for whatever reason (for

example, the number of parameters or their types are wrong), null should be returned.

5. toSQL (String, Collection, ISQLBuilderHelper)

public String toSQL (String functionName, Collection parameters,

 ISQLBuilderHelper helper) throws Exception

This method must return the SQL representation of the function if it supports one. The SQL

representation is essential if a function is to be used in queries. If the SQL representation is not

provided it will not be possible to use the function in queries. See also an example later in this
section.

Parameters:
functionName – the name of the function in the library that needs to be represented in

the SQL form.

parameters – parameters of the function specified as a collection of the

IArithmeticNode objects. To get an SQL representation of a parameter use the

toSQL method of the IArithmeticNode interface.

helper – a call-back interface that contains certain methods that may help define the

SQL representation. See the ISQLBuilderHelper interface.

Returns: a string representing the SQL expression that calculates the function value.

Throws: UnsupportedSQLElementException if the SQL representation for the function
is not supported.

6. getTypeClass (String, Collection)

public Class getTypeClass (String functionName, Collection parameters)

This method must return the class of the object that is returned when the function is calculated –

see calculate method.

Parameters:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 52 of 90

functionName – the name of the function in the library the return type of which is

required.

parameters – the parameters of the function specified as a collection of the

IArithmeticNode objects.

Returns: the class of the object that is returned by the calculate method for the specified
function.

7. getRequiredFactPatterns (String, Collection)
 public HashSet getRequiredFactPatterns (String functionName, Collection

parameters)

functionName – the name of the function in the library the return type of which is

required.

parameters – the parameters of the function specified as a collection of the

IArithmeticNode objects.

Returns: this method should have no implementation and return null.

5.1.1 ISQLBuilderHelper interface

This interface has quite a number of methods. Most of the methods, however, are used by Aware

IM only and are of no interest to a function library developer. The only method that may be

useful to developers of function libraries is the method that returns the specific database interface
used by Aware IM. The method has the following syntax:

1. getDatabaseInterface ()

public IDatabaseClientInterface getDatabaseInterface ()

This method returns the specific database currently used by Aware IM (see JavaDoc API for

details).

Parameters: none

Returns: the database interface.

5.1.2 Function library example

See the code snippet below for an example of a function library. For illustration purposes this
code snippet contains only a handful of functions supported by the standard Date Function
Library.

public class DateFunctionLibrary implements IFunctionLibrary

{

 // supported date functions

 public static final String DAY_OF_WEEK_FUNCTION = "DAY_OF_WEEK";

 public static final String CURRENT_YEAR_FUNCTION = "CURRENT_YEAR";

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 53 of 90

 public DateFunctionLibrary ()

 {

 }

 /**

 * @see IFunctionLibrary#getName()

 */

 @Override

 public String getName ()

 {

 return “DateFunctionLibrary”;

 }

 /**

 * @see IFunctionLibrary#hasFunction(String, int)

 */

 @Override

 public boolean hasFunction(String functionName, int paramNmb)

 {

 if (paramNmb == 0)

 {

 return functionName.equalsIgnoreCase

(CURRENT_YEAR_FUNCTION);

 }

 else if (paramNmb == 1)

 {

 return functionName.equalsIgnoreCase

(DAY_OF_WEEK_FUNCTION);

 return false;

 }

 /**

 * @see IFunctionLibrary#getAvailableFunctions()

 */

 @Override

 public FunctionDescription [] getAvailableFunctions ()

 {

 FunctionDescription [] results = new FunctionDescription [2];

 results [0] = new FunctionDescription (CURRENT_YEAR_FUNCTION,

 "Parameters: none\nReturn:

 current year as 4 digit

 Number");

 results [1] = new FunctionDescription (DAY_OF_WEEK_FUNCTION,

 "Parameters: attribute of Date

 type or expression producing

 Date" +

 "\nReturn: day of week of

 the provided date as Plain Text

('Monday', 'Tuesday' etc)");

 return results;

 }

 /**

 * @see IFunctionLibrary#calculate(String, Object[], INodeHelper)

 */

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 54 of 90

 public Object calculate (String functionName, Object[] params,

 INodeHelper helper)

 {

 if (params == null || params.length == 0)

 {

 if (functionName.equalsIgnoreCase(CURRENT_YEAR_FUNCTION))

 {

 Calendar cal = Calendar.getInstance ();

 cal.setTime (new Date ());

 return new Integer (cal.get (Calendar.YEAR));

 }

 }

 else if (params != null && params.length == 1)

 {

 // a single parameter must be of DateHolder type

 if (functionName.equalsIgnoreCase (DAY_OF_WEEK_FUNCTION))

 {

 if (! (params [0] instanceof DateHolder))

 return null;

 Date date=TypeUtils.toDate((DateHolder)params[0]);

 Calendar cal = Calendar.getInstance ();

 cal.setTime (date);

 SimpleDateFormat sdf = new SimpleDateFormat ("E");

 return sdf.format (date);

 }

 }

 return null;

 }

 /**

 * @see IFunctionLibrary#toSQL(String, Collection, ISQLBuilderHelper)

 */

 @Override

 public String toSQL (String functionName, Collection parameters,

 ISQLBuilderHelper sqlHelper)

 throws Exception

 {

 IDatabaseClientInterface dbi = sqlHelper.getDatabaseInterface ();

 if (parameters == null || parameters.size () == 0)

 {

 if (dbi instanceof MySQLClientInterface)

 {

 if (functionName.equalsIgnoreCase

(CURRENT_YEAR_FUNCTION))

 {

 return "YEAR(CURDATE())";

 }

 }

 else if (dbi instanceof MSSQLServerClientInterface)

 {

 if (functionName.equalsIgnoreCase

(CURRENT_YEAR_FUNCTION))

 {

 return "DATEPART (yy, GETDATE())";

 }

 }

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 55 of 90

 }

 else if (parameters != null && parameters.size () == 1)

 {

 Iterator iter = parameters.iterator ();

 IArithmeticNode arNode = (IArithmeticNode) iter.next ();

 // representation of the argument

 String dateArg = arNode.toSQL (sqlHelper);

 if (dateArg == null || dateArg.length () == 0)

 return ""; // the expression won't be calculated

 if (functionName.equalsIgnoreCase (DAY_OF_WEEK_FUNCTION))

 {

 if (sqlFlavour == CommonConstants.SQL_FLAVOUR_TSQL)

 return "DATENAME(dw," + dateArg + ")";

 else if (sqlFlavour ==

CommonConstants.SQL_FLAVOUR_MYSQL)

 return "DAYNAME(" + dateArg + ")";

 }

 }

 throw new UnsupportedSQLElementException (functionName);

 }

 /**@see IFunctionLibrary#getTypeClass(String, Collection) */

 @Override

 public Class getTypeClass (String functionName, Collection params)

 {

 return Integer.class;

 }

 /**@see IFunctionLibrary#getRequiredFactPatterns(String, Collection) */

 @Override

 public HashSet getRequiredFactPatterns (String functionName, Collection

params)

 {

 return null;

 }

}

6 Adding custom document types

Aware IM comes with a number of predefined document types: - Report, MS Word, Text,

MS Excel, HTML. These documents types should be sufficient for most applications. If,

however, an application uses other document formats new document types can be added to

Aware IM.

Note that adding new document types is only necessary if you want to include tags in documents

and you want Aware IM to replace tags with specific attribute values at run time. If you want to
use documents without modifying them you can just attach a document in any format to a form of

a business object that has an attribute of the Document type defined and Aware IM will store
the document in the database. In this case Aware IM does not need to know about the internal

structure of the document.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 56 of 90

To add a new document type to Aware IM follow the steps below:

1. Write the code for the component that will work with documents of the new type on the client

side (see section 6.1 for details).
2. Write the code for the component that will work with documents of the new type on the

server side (see section 6.2 for details).
3. Compile the source code of your components and package them in a jar file(s). Make sure

that the jar file resides in the AwareIM/CustomJars directory (see section 2).

4. Add the definition of a new document type to the BASServer.props file located in the

BIN directory of your Aware IM installation. You have to modify the line that sets the

DocumentEngines property to add the fully qualified name of your server side

component. For example (note text in bold):

DocumentEngines=com.bas.basserver.documents.JasperReportsEngine,com.bas.basser

ver.documents.MSWordDocumentEngine,com.bas.basserver.documents.TextDocumentEng

ine,com.bas.basserver.documents.HtmlDocumentEngine,com.bas.basserver.documents

.MSExcelDocumentEngine,com.mypackage.MyServerDocEngine

Note that you have to make sure that the jar file with your server side component as well as the

modifications to BASServer.props file are available to the Aware server that hosts your
application (see “Aware IM Installation Guide” for details).

If everything has been done correctly the new document type must appear in the list of document
types displayed by the Document Template Property Editor (see “Adding/Editing Document

Templates” section in the “Aware IM User Guide”).

6.1 Implementing client side component

The client side component of the new document type runs inside the Configuration Tool (as
opposed to the server side component which runs inside the Aware IM server). The client side
component is only responsible for the initialization and checking of the document template, while

the server side component is responsible for generation of documents from document templates
(replacing tags in templates with specific values).

The client side component is a class implementing the IDocEngineClient interface. The

following methods must be implemented by the class:

1. getTemplateType ()

public String getTemplateType ()

This method must return a string that uniquely identifies the new document type in the Aware IM
system. This is the string that is also displayed in the list of available document types in the

Document Template Property Editor of the Configuration Tool.

Parameters: none

Returns: a string uniquely identifying the new document type.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 57 of 90

2. getTemplateFileType ()

public String getTemplateFileType ()

This method must return the file extension specific to the new document type (without a dot) –

for example, “txt” for text documents.

Parameters: none

Returns: a string identifying the document type file extension.

3. getEditCommand ()

public FileToEdit getEditCommand (String filePath)

This method must return the operating system specific command that should be invoked to edit a

document template of the new type. This command is invoked when the user presses the Edit
button in the Document Template Property Editor of the Configuration Tool.

Parameters:

filePath – the full path of the document template to be edited.

Returns: a structure that contains the command line and file identifier. The resulting command
is formed by concatenating the command line with the file identifier (separated by the space

symbol). If method returns null, the document template is not editable. If the command line

returned as part of the FileToEdit structure is empty, the document template is editable but it

is up to the user to select the editor for the document template (the Configuration Tool in this
case will offer a dialog to select the program to edit the document template).

4. canHaveExternalResources ()

public boolean canHaveExternalResources ()

This method must return true if documents of the new type can have resources that are stored

outside of the document file itself – for example, HTML documents can have image files stored

separately whereas MS Word documents are self-contained.

Parameters: none

Returns: true if a document can have resources stored outside of the document file or

false otherwise.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 58 of 90

5. initialiseTemplate (DataPresentationTemplate,
IDomainVersion)

public void initialiseTemplate (DataPresentationTemplate template,

 IDomainVersion domainVersion)

throws Exception

This method is called by Aware IM when a new document template is being created in the
Configuration Tool. The method is supposed to find the attribute paths referenced by tags

contained in the document template and set the information about these paths into the provided

DataPresentationTemplate object using its setAttributePaths method.

Parameters:

template – the document template to set the attribute paths into

domainVersion – the business space version where the document template is defined

Throws: an exception if an error occurs or if the document template structure is invalid.

6. elementsRenamed (DataPresentationTemplate, RenamedElements,

INodeChangeHelper, IDomainVersion)

public DataPresentationTemplate elementsRenamed (

DataPresentationTemplate oldTemplate,

RenamedElements renamedElements,

InodeChangeHelper helper,

IDomainVersion domainVersion)

This method is called by Aware IM when the user of the Configuration Tool renames some
elements in the business space version. The method is supposed to check whether the renamed

elements are referenced by tags contained in the document template and change the contents of
the tags accordingly so that they reference the new names.

Parameters:

oldTemplate – the document template to be checked if it references the renamed

elements

renamedElements – a structure that describes the elements that have been renamed by

the user. The elements are grouped by categories corresponding to the different concepts

supported by the business space version (business objects, processes etc). Each element in
each category contains the old name of the element and the new name.

domainVersion – the business space version where the document template is defined

helper – a call-back interface containing the useful method checkAttributePath.

This method can be used to check whether a particular attribute path referenced by the
document template needs to be modified as a result of renaming. If the method returns

null the attribute path need not be changed, otherwise the modified path is returned.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 59 of 90

Returns: if the document template needs to be modified as a result of renaming the modified

template must be returned otherwise null must be returned. Note that the method is not allowed

to modify the original template directly – it must copy the original template first using the

deepCopy method and then modify the copy.

7. createDynamicTemplate (String, String, byte [], String)

public DataPresentationTemplate createDynamicTemplate (

String templateName,

String fileName,

byte [] fileData,

String dirPath)

Implementers of this method are supposed to create the DataPresentationTemplate on the fly
from the given parameters. They should also save the template file and all resources (if any) in

the provided directory.

Parameters:

tempalteName – name of the template to create

fileName – name of the original file containing the template and possibly resources (if

file represents an archive, for example).

fileData – data of the original file (it can represent the template itself or an archive

containing the template and its resources)

dirPath – name of the directory where the template file and all its resources (if any)

should be written.

Returns: newly create template.

6.2 Implementing server side component

The server side component of the new document type runs inside the Aware IM server (as
opposed to the client side component which runs inside the Configuration Tool). The server side

component is mainly responsible for generation of documents from document templates – it goes
through document template and generates documents by replacing tags encountered in the
document template with the appropriate values of expressions contained inside the tags.

The server side component is a class implementing the IDocumentEngine interface. The

following methods must be implemented by the class:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 60 of 90

1. getClientEngine ()

public IDocEngineClient getClientEngine ()

This method must return the component that implements the document type on the client side –
see section 6.1.

Parameters: none

Returns: the instance of the client side component (must not be null)

2. fillWithData (String, Map, IDocumentDataSource,

DataPresentationTemplate, IDocEngineHelper,

IDomainVersion, int, Boolean, int)

public ReportResult fillWithData (

String dirPath,

Map params,

IDocumentDataSource dataSource,

DataPresentationTemplate template,

IDocEngineHelper helper,

IDomainVersion domainVersion,

int outputFormat,

boolean printResults,

int numCopies) throws DocumentException

This method is called by Aware IM at run time when a particular document template is
processed. The method is supposed to replace tags used in the document template with the

appropriate attribute values. The values must be obtained from the provided data source – see the

IDocumentDataSource interface. The overall structure of the method must be as follows:

1. Find the contents of the tags used in the document template.

2. Call reset method of the provided data source to position it on the first element.

3. Create a document (BinaryResource) from the original template that will have tags
replaced with their values

4. Go through all the tags and call the getExpressionValue method of the provided data
source to calculate the value of the expression used inside the tag

5. Replace each tag in the document with its calculated value

6. Call the next method of the data source. While there are elements in the data source repeat

steps 3 to 5.

See also the example.

Parameters:

dirPath – the name of the directory where the template file is stored

params – can be ignored

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 61 of 90

dataSource – the source of data for the values of the tags. See the

IDocumentDataSource interface.

template – the document template which is being filled with data

helper – can be ignored

domainVersion – the business space version where the document template is defined

 outputFormat – can be ignored

printResults – if true the resulting document(s) should also be sent to the printer

numCopies – number of copies to print (only if “printResults” is true)

Returns: A structure represented by the ReportResult object. The first document created at

the step 3 must be set into this structure as the BinaryResource. All other documents must be

stored on disk as files. Full path names of the files must be set into the ReportResult

structure.

Throws: the DocumentException if error occurs.

3. printFile ()

public void printFile (File fileToPrint) throws DocumentException

This method is supposed to print the specified file. It is assumed that the provided file is of the

format supported by the document type (presumably obtained by calling the fillWithData

method).

Parameters:
 fileToPrint – document to print

Throws: the DocumentException if an error occurs.

6.3 DataPresentationTemplate class

This class represents the document template that most methods of the document type components
work with. Below are the descriptions of some of the methods of this class that can be useful to

the document type components (for the full list of methods see the JavaDoc API).

1. getLoadedTemplate ()

public BinaryResource getLoadedTemplate ()

This method returns the data for the document template as a BinaryResource.

BinaryResource is a structure that contains the document file name and the binary data of

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 62 of 90

the document as an array of bytes. This method should be used by fillWithData method to

retrieve the document template so that it can find tags and replace them with values.

Parameters: none

Returns: the document template as a BinaryResource structure.

2. getLoadedResources ()

public BinaryResource [] getLoadedResources ()

This method retrieves any resources that the document may have that are stored outside of the
document template file (for example, images, fonts etc).

Parameters: none

Returns: the external resources as the BinaryResource structures or null if the

document template has no external resources.

3. getAttributePaths ()

public String [] getAttributePaths ()

This method returns the attribute paths used inside tags in the document template. The attribute

paths are represented in the form objectName.attributeName. Note that the paths

returned are not necessarily the complete expressions used inside the tags. A tag expression may
contain not only the attribute paths, but also arithmetic expressions with these paths. The paths

used by the template would have been set by the setAttributePaths method.

Parameters: none

Returns: the attribute paths used in the document template or null if none are used.

4. setAttributePaths (String [] attributePaths)

public void setAttributePaths (String [] attributePaths)

This method sets attribute paths used inside tags in the document template. The attribute paths are

represented in the form objectName.attributeName. Note that the paths returned are not

necessarily the complete expressions used inside the tags. A tag expression may contain not only
the attribute paths, but also arithmetic expressions with these paths. This method is usually called

from the initialiseTemplate method of the IDocEngineClient interface.

Parameters:

attributePaths – the attribute paths used in the document template

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 63 of 90

5. deepCopy ()

public IConfigurationElement deepCopy ()

This method creates a “deep copy” of “this”

Parameters: none

Returns: copy of “this” as IConfigurationElement (which can be cast back to the

DataPresentationTemplate).

6.4 IDocumentDataSource interface

This interface is used in the fillWithData function of the IDocumentEngine interface.

The component implementing this interface provides access to the current values of object
attributes in the Context and performs calculations with these values. There may be several

instances of the business object in the Context and IDocumentDataSource allows iterating

over all such instances. See also “Context of Rule Execution” section in the “Aware IM User

Guide”

The methods of this interface that may be useful to document type components are described

below:

1. reset ()

public void reset ()

This method positions the data source before the start of the first element. The subsequent call to

the next method will position the data source on the first element. This method must be called at

the start of iterations over the elements of the data source.

2. next ()

public boolean next ()

This method positions the data source on the next element if there is any. When called

immediately after reset positions the data source on the first element.

Parameters: none

Returns: true if the method found next element to position itself on or false if there is
no more data in the data source.

3. getExpressionValue (String)

public Object getExpressionValue (String expression) throws Exception

This method calculates the value of an expression inside a tag. The expression may be a reference
to the object’s attribute (attribute path) or a more complicated arithmetic expression. If the

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 64 of 90

expression contains the formatting expression, the result is converted to the specified format;

otherwise it is converted to the format specified in the attribute (if a single attribute is used). The

fillWithData method can use the Object.toString () method to convert the result to

String and put it in the output document instead of the tag.

Parameters:

expression – the text of the expression. This is the text that is contained inside a tag

(not including the tag symbols)

Returns: the value of the expression - possible types of the Java object are presented in the

table of the correspondence between attribute and Java types in the Appendix A. Null can be

returned if the value is undefined.

Throws: an exception if the value cannot be calculated for whatever reason.

4. getExpressionValueForCalcs (String)

public Object getExpressionValueForCalcs (String expression) throws Exception

This method is very similar to the getExpressionValue method. The only difference is that

the resulting value is not converted into any presentation format.

Parameters:

expression – the text of the expression. This is the text that is contained inside a tag

(not including tag symbols)

Returns: the value of the expression - possible types of the Java object are presented in the

table of the correspondence between attribute and Java types in the Appendix A.

6.5 Example

The code snippet below represents essentially the full text of the document engine that handles

the text document type in Aware IM:

// Client side component
public class TextEngineClient implements IDocEngineClient

{

 public TextEngineClient()

 {

 }

 /**

 * @see IDocEngineClient#getTemplateType()

 */

 public String getTemplateType ()

 {

 return CommonConstants.TEMPLATE_TEXT;

 }

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 65 of 90

 /**

 * @see IDocEngineClient#getEditCommand(String)

 */

 public FileToEdit getEditCommand (String templateFilePath)

 {

 return Utils.isWindows () ?

 new FileToEdit ("cmd.exe /k", "\"" + templateFilePath

 + "\"") :

 new FileToEdit ("", templateFilePath);

 }

 /**

 * @see IDocEngineClient#getTemplateFileType()

 */

 public String getTemplateFileType()

 {

 return "txt";

 }

 /**

 * @see IDocEngineClient#canHaveExternalResources()

 */

 public boolean canHaveExternalResources ()

 {

 return false;

 }

 /**@see IDocEngineClient#initialiseTemplate (DataPresentationTemplate,

IDomainVersion) */

 public void initialiseTemplate (DataPresentationTemplate tdef,

IDomainVersion domainVersion)

 throws Exception

 {

 // determine attribute paths used

 String text = getTemplateText (tdef);

 if (text != null)

 {

 // find if there are any tags

 Vector taggedParams = Utils.extractParameters (text,

“<<”, “>>”);

 if (taggedParams != null && taggedParams.size () > 0)

 DocumentEngineUtils.setAttributePaths

(taggedParams, tdef);

 }

 }

 /**

 * @see

com.bas.shared.docengines.IDocEngineClient#elementsRenamed(com.bas.shared.doma

in.configuration.elements.DataPresentationTemplate,

com.bas.shared.domain.configuration.misc.RenamedElements,

com.bas.shared.ruleparser.INodeChangeHelper,IDomainVersion)

 */

 public DataPresentationTemplate elementsRenamed (

 DataPresentationTemplate oldTemplate,

 RenamedElements renamedElements,

 INodeChangeHelper helper,

 IDomainVersion domainVersion)

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 66 of 90

 {

 String text = getTemplateText (oldTemplate);

 if (text == null)

 return null;

 // extract all parameters, convert them to ASTTagStatement

// expressions, apply changes

 // and then replace parameters in the document

 Vector taggedParams = Utils.extractParameters(text,“<<”,“>>”);

 if (taggedParams == null || taggedParams.size () == 0)

 return null;

 Vector modified = DocumentEngineUtils.getModifiedParameters (

 taggedParams, renamedElements, helper);

 Vector withTags = DocumentEngineUtils.appendTags (modified,

 “<<”, “>>”);

 String newText = Utils.replaceParameters (text,withTags, “<<”,

“>>”);

 if (newText.equals (text))

 return null;

 DataPresentationTemplate newTemplate =

(DataPresentationTemplate) oldTemplate.deepCopy ();

 try

 {

 DocumentEngineUtils.setAttributePaths (modified,

 newTemplate);

 BinaryResource br = new BinaryResource

(oldTemplate.getTemplate ().getName (),

newText.getBytes ());

 newTemplate.setTemplate (br);

 }

 catch (Exception e)

 {

 return null;

 } // shouldn't happen

 return newTemplate;

 }

 protected String getTemplateText (DataPresentationTemplate template)

 {

 try

 {

 BinaryResource templData = template.getTemplate ();

 if (templData == null)

 return null;

 byte [] data = templData.getData ();

 if (data == null)

 return null;

 return new String (data);

 }

 catch (ResourceUnavailableException re)

 {

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 67 of 90

 return null;

 }

 }

}

// Server side component
public class TextDocumentEngine implements IDocumentEngine

{

 public TextDocumentEngine ()

 {

 }

 /**

 * @see IDocumentEngine#getClientEngine()

 */

 public IDocEngineClient getClientEngine ()

 {

 return new TextEngineClient ();

 }

 /**

 * @see IDocumentEngine#fillWithData(String, Map, IDocumentDataSource,

DataPresentationTemplate, IDocEngineHelper, IDomainVersion, int, boolean)

 */

 public BinaryResource [] fillWithData (String path, Map params,

 IDocumentDataSource dataSource,

 DataPresentationTemplate tdef,

 IDocEngineHelper helper,

 DomainVersion domainVersion,

 int outputFormat,

 boolean printResults)

 throws DocumentException

 {

 BinaryResource template = tdef.getLoadedTemplate ();

 if (template == null)

 throw new DocumentException ("No data in the presentation

template");

 String fileName = path + "/" + template.getName ();

 try

 {

 File inputFile = new File (fileName);

 String text = FileUtils.readTextFile (fileName);

 // find if there are any tags

 Vector taggedParams = Utils.extractParameters (text);

 if (taggedParams == null || taggedParams.size () == 0 ||

 dataSource == null)

 {

 // just return the original template

 BinaryResource [] results = new BinaryResource [1];

 results [0] = new BinaryResource ();

 results [0].setName (inputFile.getName ());

 results [0].setData (FileUtils.readFile

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 68 of 90

 (fileName));

 return results;

 }

 if (dataSource == null)

 throw new DocumentException ("Document template

requires data, but the data source is not

provided");

 // prepare the data source

 dataSource.reset ();

 // for each group of records create resulting document

// and resolve tagged fields inside the text

 Vector resources = new Vector ();

 while (dataSource.next ())

 {

 Vector tagValues = new Vector

(taggedParams.size());

 for (Iterator iter = taggedParams.iterator ();

iter.hasNext ();)

 {

 String tagContents = (String) iter.next ();

 Object o = dataSource.getExpressionValue

(tagContents);

 tagValues.add (o==null? null : o.toString());

 }

 String newText = Utils.replaceParameters (text,

tagValues);

 if (printResults)

 printText (newText);

 BinaryResource br = new BinaryResource ();

 br.setData (newText.getBytes ());

 br.setName (inputFile.getName ());

 resources.add (br);

 }

 if (resources.size () == 0)

 return null;

 BinaryResource [] results = new BinaryResource

[resources.size ()];

 int i = 0;

 for(Iterator iter=resources.iterator();iter.hasNext();

++i)

 results [i] = (BinaryResource) iter.next ();

 return results;

 }

 catch (DocumentException de)

 {

 throw de;

 }

 /**

 * @see IDocumentEngine#printFile()

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 69 of 90

 */

 public void printFile (File fileToPrint)

 throws DocumentException

 {

 try

 {

String text =

FileUtils.readTextFile(fileToPrint.getPath());

 printText (text);

 }

 catch (Exception e)

 {

 throw new DocumentException (e.getMessage ());

 }

 }

 protected void printText (String text)

 throws DocumentException

 {

 try

 {

 PlainDocument doc = new PlainDocument ();

 doc.insertString (0, text, null);

 TextDocumentPrintRenderer printer = new

TextDocumentPrintRenderer ();

 printer.print (doc, false);

 }

 catch (Exception e)

 {

 throw new DocumentException (e.getMessage ());

 }

 }

}

7 Adding report scriptlets

Aware IM offers a powerful tool called the Report Designer that allows users to configure their

own reports and presentations of business objects and groups. Most reports and presentations can
be configured without any programming as the Report Designer offers quite a rich set of versatile
tools. Sometimes though it may be necessary to add the programming components to a particular

report to perform some non-standard tasks – for example, calculate an image representing a chart
of the report data.

Aware IM allows plugging in such programming components (scriptlets) into a particular report
or presentation. To add a scriptlet to a report follow the steps below:

1. Write the code for the scriptlet (see section 7.1 for details)

2. Compile the source code of your scriptlet and package it in a jar file(s). Make sure that the jar
file resides in the AwareIM/CustomJars directory (see section 2)

3. Specify the fully qualified name of the scriptlet in the Report Designer in the Configuration

Tool. A scriptlet can either be attached to a text element of the report or to an image element.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 70 of 90

Select the element that will be implemented by the scriptlet and in the Properties dialog for

this element tick “Calculated by System” box. Press the Settings button and
specify the fully qualified name of the component – see also the “Working with

Report/Presentation Designer” section in the “Aware IM User Guide”.

7.1 Implementing code for the scriptlet

The scriptlet’s code is called by Aware IM at run time when it calculates the report in which the
scriptlet is present. The purpose of the scriptlet component is to calculate and set the value of the
element that it is attached to. When the scriptlet is called it is given a call-back interface

IReportEnvironment representing the environment in which the scriptlet is running. This

interface exposes the method setElementValue, which has to be called by the scriptlet

when it finishes the necessary calculations.

The scriptlet is a class that must implement IReportScriptlet interface. Methods of this

interface are called at various times during the report calculation. The scriptlet designer must
provide a non-empty implementation of those methods that are called at the times that the

scriptlet will be calculating its values. The methods exposed by the IReportScriptlet
interface are described below. As mentioned before all methods are given a reference to the

IReportEnvironment interface. Also all methods are supposed to throw an exception if
error occurs.

1. beforeReportInit (IReportEnvironment)

public void beforeReportInit (IReportEnvironment environment)

throws Exception

This method is called just before the report is initialized.

2. afterReportInit (IReportEnvironment)

public void afterReportInit (IReportEnvironment environment)

throws Exception

This method is called immediately after the report has been initialized.

3. beforePageInit (IReportEnvironment)

public void beforePageInit (IReportEnvironment environment)

throws Exception

This method is called just before each page is initialized.

4. afterPageInit (IReportEnvironment)

public void afterPageInit (IReportEnvironment environment)

throws Exception

This method is called after the initialization of each page.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 71 of 90

5. beforeColumnInit (IReportEnvironment)

public void beforeColumnInit (IReportEnvironment environment)

throws Exception

This method is called before each column is initialized.

6. afterColumnInit (IReportEnvironment)

public void afterColumnInit (IReportEnvironment environment)

throws Exception

This method is called after the initialization of each column.

7. beforeGroupInit (String, IReportEnvironment)

public void beforeGroupInit (String groupName, IReportEnvironment

 environment) throws Exception

This method is called just before the specified group is initialized.

8. afterGroupInit (String, IReportEnvironment)

public void afterGroupInit (String groupName, IReportEnvironment

 environment) throws Exception

This method is called after the specified group has been initialized.

9. beforeDetailEval (IReportEnvironment)

public void beforeDetailEval (IReportEnvironment environment)

throws Exception

This method is called before evaluation of the details section of the report.

10. afterDetailEval (IReportEnvironment)

public void afterDetailEval (IReportEnvironment environment)

throws Exception

This method is called after evaluation of the details section of the report.

7.1.1 IReportEnvironment interface

Descriptions of the methods that can be used by a scriptlet are described below:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 72 of 90

1. getElementValue (String)

public Object getElementValue (String elementName)

throws Exception

This method returns the current value of the report element with the specified name. The element
must be either an element with a scriptlet attached (text or image) or a tag element, in which case
the current value of the tag expression is retrieved. Each element in the report may be given a

name in its Properties dialog. If the element’s name is not specified Aware IM generates its own
name. If a scriptlet needs to access certain elements in the report it is a good idea to give such

elements some meaningful names.

Parameters:

elementName – the name of the element the value of which is retrieved

Returns: the value of the element – either String representing the text if the element is a text

element or an Object representing the value of the tag expression of any type listed in the table in

Appendix A if the element is a tag element or java.awt.Image if the element is an image.

Throws: an exception if the element with the specified name was not found or there was some

other error.

2. setElementValue (String, Object)

public void setElementValue (String elementName, Object value)

throws Exception

This method sets the current value of the report element with the specified name. The element

must be an element with a scriptlet attached (text or image). Each element in the report may be
given a name in its Properties dialog. If the element’s name is not specified Aware IM generates

its own name. If a scriptlet needs to access certain elements in the report it is a good idea to give
such elements some meaningful names.

Parameters:

elementName – the name of the element the value of which is set

value – the value to set – must be either a String if the element is a text element or

java.awt.Image if the element is an image.

Throws: an exception if the element with the specified name was not found or there was some

other error.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 73 of 90

7.2 Example

The following example shows the code for a simple scriptlet that accumulates names encountered
in the report and provides them in a single comma separated string. It also displays a static image.
It is assumed that the report in which the scriptlet executes has the following elements:

- Tag element with the name “FirstName”

- Tag element with the name “Last Name”
- Text element with the name “NamesList” (the scriptlet is attached to this element)
- Image element with the name “Image” (the scriptlet is also attached to this element)

public class TestScriptlet implements IReportScriptlet

{

 private boolean m_firstTime = true;

 public TestScriptlet()

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#beforeReportInit(com.bas.basserve

r.documents.IReportEnvironment)

 */

 public void beforeReportInit(IReportEnvironment environment)

 throws Exception

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#afterReportInit(com.bas.basserver

.documents.IReportEnvironment)

 */

 public void afterReportInit(IReportEnvironment environment)

 throws Exception

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#beforePageInit(com.bas.basserver.

documents.IReportEnvironment)

 */

 public void beforePageInit(IReportEnvironment environment)

 throws Exception

 {

 }

 /* (non-Javadoc)

 * @see

com.bas.basserver.documents.IReportScriptlet#afterPageInit(com.bas.basserver.d

ocuments.IReportEnvironment)

 */

 public void afterPageInit(IReportEnvironment environment)

 throws Exception

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 74 of 90

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#beforeColumnInit(com.bas.basserve

r.documents.IReportEnvironment)

 */

 public void beforeColumnInit(IReportEnvironment environment)

 throws Exception

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#afterColumnInit(com.bas.basserver

.documents.IReportEnvironment)

 */

 public void afterColumnInit(IReportEnvironment environment)

 throws Exception

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#beforeGroupInit(java.lang.String,

com.bas.basserver.documents.IReportEnvironment)

 */

 public void beforeGroupInit(

 String groupName,

 IReportEnvironment environment)

 throws Exception

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#afterGroupInit(java.lang.String,

com.bas.basserver.documents.IReportEnvironment)

 */

 public void afterGroupInit(

 String groupName,

 IReportEnvironment environment)

 throws Exception

 {

 }

 /*

 * @see

com.bas.basserver.documents.IReportScriptlet#beforeDetailEval(com.bas.basserve

r.documents.IReportEnvironment)

 */

 public void beforeDetailEval(IReportEnvironment environment)

 throws Exception

 {

 }

 /*

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 75 of 90

 * @see

com.bas.basserver.documents.IReportScriptlet#afterDetailEval(com.bas.basserver

.documents.IReportEnvironment)

 */

 public void afterDetailEval(IReportEnvironment environment)

 throws Exception

 {

 // here all report elements have been calculated already

 String firstName = (String) environment.getElementValue

("FirstName");

 String lastName = (String) environment.getElementValue

("LastName");

 String curList = (String) environment.getElementValue

("NamesList");

 if (curList == null)

 curList = "";

 // create the string with names

 if (m_firstTime)

 m_firstTime = false;

 else

 curList = curList + ",";

 // set the value for our element

 environment.setElementValue ("NamesList", curList + firstName +

" " + lastName);

 // set the value for another element

 ImageIcon image = new ImageIcon

(getClass().getResource("/com/bas/uiconfiguration/images/arrowLeft.gif"));

 environment.setElementValue ("Image", image.getImage ());

 }

}

8 Writing client-side plugins

In Aware IM you can not only add plugins for the server (such as custom processes, channels or

functions), but you can also add plugins that execute on the client within a web browser. Most of
the time you would write these plugins in order to add your custom user interface functionality,

or modify the default Aware IM user interface behaviour.

All client-side plugins must be written in Javascript and in most cases you need the knowledge of

the Kendo UI Javascript library from Telerik (www.telerik.com/kendo-ui) and a popular open
source Javascript library called jQuery (https://jquery.com/) . The description that follows

assumes that the reader is familiar with Javascript, Kendo UI library and jQuery.

There are several types of the client-side plugins you can add in Aware IM:

 Modify the default behaviour and presentation of forms

 Modify the default behaviour and presentation of form sections in forms

 Modify the default presentation of individual fields within forms

http://www.telerik.com/kendo-ui
https://jquery.com/

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 76 of 90

 Modify the default presentation and behaviour of queries

 Modify the default presentation and behaviour of content panels inside visual perspectives

We will look at each of these client-side plugins separately

8.1 Architecture of the client-side code

Before we explain how to write scripts for different components it is useful if a developer

understands roughly the general architecture of the client-side code.

This is what happens behind the scenes when a screen is displayed in the browser by Aware IM.
A screen (usually represented by visual perspectives) consists of multiple queries, forms, content
panels and so on (we will call them “components”).

Each component, such as a form or a query is handled by the appropriate “controller” (also called

“parser”). The fist thing the controller does is ask the server to provide the definition of the layout
of the component. Then the controller parses XML returned by the server and prepares two
Javascript objects:

 jQuery object containing HTML of the component (form or query). This object is called
“markup”.

 An array of “widget configurations”. Each member of the array represents configuration
for some widget of the Kendo UI library that the component includes. For example a

query usually just includes a single widget that implements a query, such as the grid
widget, for example. But a form may have a number of widgets – almost one per each

attribute displayed by the form

Then the screen to be displayed is assembled from HTML markups of different components that

the screen contains and the final HTML for the screen is built. This HTML is then given to the
Kendo UI library, which creates all widgets of the screen based on the screen HTML and

configurations of the widgets prepared by the controllers. Kendo UI library modifies this HTML
to add its own classes and performs other steps to ensure that its widgets are displayed correctly.
Finally the resulting HTML document is given to the browser which draws it on the screen.

To summarize:

1. A screen consists of components. Each component is represented by its own controller
2. The process starts by each controller asking the server for the definition of components
3. The controller then prepares HTML markup of the component and configurations of

containing widgets
4. The HTML of the screen is created from the markups of components returned by controllers

5. The HTML and widget configurations are then given to the Kendo UI library to prepare its
widgets

6. Final HTML of the screen is produced and is drawn by the browser.

So where in this process do the client scripts come in? For most components there are two types

of scripts – the “initialization” script and the “render” script. As a developer you can define one
or both – depending on what the script needs to do. The initialization script if defined is run by
Aware IM just before the controller of the component returns the markup of the controller and

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 77 of 90

the array of widget configurations (so immediately after step 3 above). The script, therefore, has a

chance to modify the markup returned by the controller or the configuration of any of the widgets
of the component.

The markup can be modified using jQuery functions that manipulate HTML. The script can only
modify the markup for the component, but not the entire screen, because the entire screen hasn’t

been built yet.

Widget configurations represent Javascript objects with properties described by Kendo UI API

Reference. For example, to see the API Reference of the Kendo UI grid widget that implements
Aware IM queries in the standard form go to http://docs.telerik.com/kendo-

ui/api/javascript/ui/grid and look up the Configuration section at the top. Note that you can only
modify configuration of the widget (which also includes Events), but you cannot use Methods of
the widget in the initialization script.

The render script, though, runs after everything has been drawn on the screen – i.e. after step 6

above. By this time all Kendo UI widgets will have been already created, so the script can access
the widget and call its methods (see the Methods section in the Kendo UI API Reference for each
widget). Configuration objects cannot be used at this stage.

The render script can also access the final browser document and manipulate it if need be using

jQuery functions. The following sections describe how this can be done in more detail.

8.2 Modifying default behavior and presentation of queries

To modify the default behavior and presentation of queries you need to go to a particular query

that you want to modify and click on the “Scripts” property in the list of properties of the query.
You can define “initialization” script or “render” script or both (see “Architecture of the Client-

side Code”)

The following objects are exposed to the initialization script:

1. “config” object - this object represents Kendo UI configuration of the main widget
implementing the query (see the table below)

2. “markup” object – HTML markup prepared by the controller
3. “parser” object – the controller itself
4. “widgets” – an array of all widget configurations for the query

Query

presentation

type

Kendo UI widget Kendo UI reference

Standard Grid http://docs.telerik.com/kendo-ui/api/javascript/ui/grid

Custom

(Custom Data

Template, scroll

view unticked)

List View http://docs.telerik.com/kendo-ui/api/javascript/ui/listview

Custom Scroll View http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/scrollview

http://docs.telerik.com/kendo-ui/api/javascript/ui/grid
http://docs.telerik.com/kendo-ui/api/javascript/ui/grid
http://docs.telerik.com/kendo-ui/api/javascript/ui/grid
http://docs.telerik.com/kendo-ui/api/javascript/ui/listview
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/scrollview

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 78 of 90

(Custom Data

Template, scroll

view ticked)

Custom (Mobile

Data Template)

Mobile List View http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/listview

Calendar/Sched

uler

Scheduler http://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler

Chart Chart http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/chart

Gantt Gantt http://docs.telerik.com/kendo-ui/api/javascript/ui/gantt

It is usually unnecessary to modify the markup, but you are welcome to modify the configuration
of the widget.

For example, the following script will change the alignment of the column that corresponds to the
“Status” attribue:

for (var i = 0; i < config.columns.length; ++ i)

{

 if (config.columns[i].field == “Status”)

 {

 config.columns[i].attributes = { alignment: “right” }

 }

}

The following script will make the grid “groupable”, i.e allow dragging the columns to a special
area in order to group the grid by this column:

config.groupable = true;

The “parser” object represents the controller and allows you to access certain properties of the

system that you may need. The type of this object depends on the type of the query representation
and is provided in the table below:

Query

presentation

type

Aware IM

Javascript object

type

Source code

Standard AwareApp_QueryLayou

tParser

AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/queryLayoutP

arser.js

Custom

(without scroll

view)

AwareApp_CustomLayo

utParser

AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/customLayout

Parser.js

Custom (with

scroll view)

AwareApp_ScrollViewP

arser

AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/scrollViewPar

ser.js

Custom (with

mobile

template)

AwareApp_MobileListV

iewParser

AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/customMobile

Parser.js

http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/listview
http://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/chart
http://docs.telerik.com/kendo-ui/api/javascript/ui/gantt

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 79 of 90

Chart AwareApp_ChartParser AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/chartParser.js

Calendar/Sched

uler

AwareApp_CalendarPar

ser

AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/calendarParse

r.js

Gantt AwareApp_GanttParser AwareIM/Tomcat/webapps/AwareIM/aware_ext/parsers/ganttParser.js

The “widgets” object representing an array of all widgets that the query has can be used to
modify other widgets – for example, toolbars generated to represent query operations (if these are

defined for the query).

Each member of the “widgets” array has the following properties:

 type (the type of the Kendo UI widget)

 id (the unique id in the markup of the query that the widget uses)

 config (the Kendo UI configuration of the widget)

So to modify a toolbar, for example (http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar)
and stop it being resizable you would find the toolbar in the array and modify its “config”

property like this:

for (var i = 0; i < widgets.length; ++ i)

{

 if (widgets[i].type == “toolbar”)

 widgets[i].config.resizable = false;

}

The second script (“render” script) that you can define in the Scripts dialog allows you to modify
the widget representing the query after it has been drawn. Here you would use methods of the
corresponding Kendo UI object, rather than configuration options. Objects available for your

Javascript here are:

 “widget” object

 “parser” object

The “widget” object represents the widget that has been drawn.

The “parser” object is the controller object described above.

8.3 Modifying default behavior and presentation of forms

To modify the default behavior and presentation of forms you need to go to a particular object
form that you want to modify and click on the Scripts property under the “Advanced” category in
the list of properties of the form. You can define “initialization” script or “render” script or both

(see “Architecture of the Client-side Code”).

The Javascript objects that are exposed to the initialization script for forms are the same as for
queries:

http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 80 of 90

 “config” object

 “markup” object

 “parser” object

 “widgets” object

Just like with queries, the parser object represents the form controller and the “markup” object
represents the HTML markup of the form. However, there is a significant difference in the

“config” object exposed by forms. Whereas for queries the “config” object represents some
widget of the Kendo UI library, that is mainly responsible for the implementation of the query,
there is no such widget for forms. A form is just an HTML code that consists of rows and

columns of the Bootstrap grid system (getbootstrap.com/css/). Each row and column contains
attributes of the form – depending on the type of the attribute they are either implemented as

plain HTML or they may also include a configuration for a Kendo UI widget.

This HTML is also wrapped in a “panel” that includes HTML of toolbars around the form (if they
are defined) and also the implementation of the default or custom panel header. Note that the

HTML that includes toolbars and panel header is also included as part of the query markup.

So the “config” object for forms represents the configuration of a special Aware IM object called
“panel”. You can find the code of this object in

AwareIM/Tomcat/webapps/AwareIM/aware_kendo/panel.js file. At the

beginning of the file there is a description of all configturation parameters supported by this

object. You can change these parameters by your script..

For example, the following script will turn off the display of the header for the form, no matter

what is specified in the Aware IM properties of the form:

config.preventHeader = true;

However, you are unlikely to need it because most of these parameters can be customized in
Aware IM without having to use a script.

You may, however, want to modify the markup of the form – for example, you may want to

modify the generated layout or styling of some attributes. You can use it through the “markup”
object (or in the “render” script after the form has been drawn). The description of the HTML
markup is beyond the scope of this document. If you want to study it you can just generate a form

and use the browser inspector to display the HTML of the form. You can then use your scripts to
modify this markup.

You can, however, modify the widgets used by the form using the “widgets” object – you will
probably modify widgets that represent attributes in their own Advanced scripts, but you can also

modify other widgets used by a form, such as toolbars, for example – this has been already
explained in the previous section.

The “parser” object allows you to access certain properties of the system that you may need
(especially if you are modifying the markup of the form). The type of this object is

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 81 of 90

AwareApp_FormParser. You can look up full methods of this object in the file

AwareIM/Tomcat/webapps/AwareIM/aware_kendo/parsers/formParser.js

Some useful methods of the parser object that you can use here are:

 getField (attributeName, sectionName) – get the field of the form for the

specified attribute and form section

 getReferenceParser (refAttrName) – get the “parser” of the reference

attribute of the form, responsible for displaying a table, calendar etc – see 8.1

The second script (“render” script) that you can define in the Scripts dialog allows you to modify
the form after it has been drawn. Here you can only use jQuery methods to modify the resulting

document markup. The only object available for you here is the “parser” object representing the
form controller.

8.4 Modifying default behavior and presentation of form sections

Modifying the default behavior of a form section only makes sense if a form has more than one

section defined. If a form has one section than you should modify the behavior of the form, not
section, as described in the previous section. To modify the default behavior and presentation of a
form section you need to go to a particular form section of the form and click on the “Scripts”

property under the “Advanced” category in the list of properties of the form section.

The rules for defining the scripts are very similar to defining the scripts for forms, the only
difference being the “parser” object. The type of this object is

AwareApp_FormSectionParser rather than AwareApp_FormParser and the source

code of the object is available in this file:

AwareIM/Tomcat/webapps/AwareIM/aware_kendo/parsers/formSectionPar

ser.js

8.5 Modifying default presentation of individual fields on forms

To modify the default presentation of an individual field on an object form you need to go to the
presentation properties of the corresponding attribute and click on the “Advanced” property.
There is only one script available for you here.

As explained in the “Architecture of the client-side code” the controller of the form prepares the

HTML markup of the form as well as the list of Kendo UI widgets that the form includes. Apart
from other things the markup of the form contains markups of individual fields present on the
form. And the collection of widgets for the form includes widgets used by individual fields (note

that not all fields use widgets, some use markup only). Each type of field on the form is
represented by its own Aware IM Javascript object (see the table below).

The form controller asks every individual field on the form to prepare its markup and the
collection of widgets. Then it assembles the result into the final markup and widget collection of

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 82 of 90

the form. The script for each indivisual field is executed just before it is given to the form

controller, so that the script has a chance to modify the markup or widget configuration.

There are three objects exposed to the script:

 “field” – this is Aware IM object representing the field (see the table below)

 “markup” – this is the HTML markup of the field (jQuery object)

 “config” – this is the object that represents a widget configuration of the field or null if the
field does not use a widget. The object has the following properties:

o “type” – type of the widget
o “id” – the id of the element in the markup used by the widget

o “config” – the Kendo UI configuration of the widget

You can modify modify any of these object. For example, if you want to hide the field you can

write the following script:
markup.css (“display, “none”);

Or if you want to change which tools are available for an HTML editor field (see
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor#configuration-tools), you could write the
following script:

config.config.tools = [“bold”, “italic”, “underline”]

There are some useful methods of the “field” object that you can use in your script (the code of
all all the objects representing different fields is in

AwareIM/Tomcat/webapps/AwareIM/aware_kendo/field/fields.js file.

 field.getAttributeName () – retrieve the name of the object attribute

 field.getObjectName () - retrieve the name of the object

 field.getObjectId () – retrieve the id of the object

and so on.

Note that if you want to access the field after it has already been drawn you need to find the field
on the form and so you need to modify the “render” script of the form, like so, for example:

var field = parser.getField (“Account”, “Main”);

var value = field.getValue ();

The following table lists all different field types and the corresponding Kendo UI widgets.

Aware IM attribute type Kendo UI widget Aware IM field object

Plain Text (no choices, 1 line) None AwareApp_TextField

Plain Text (no choices, several

lines)

None AwareApp_TextAreaField

Plain Text, Number, Date with

radio or checkbox choices

NumericText Box

(http://docs.telerik.com/kendo-

ui/api/javascript/ui/numerictextbox)

AwareApp_NumberField

http://docs.telerik.com/kendo-ui/api/javascript/ui/editor#configuration-tools
http://docs.telerik.com/kendo-ui/api/javascript/ui/numerictextbox
http://docs.telerik.com/kendo-ui/api/javascript/ui/numerictextbox
http://docs.sencha.com/extjs/5.0/apidocs/#!/api/Ext.form.field.Radio

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 83 of 90

Plain Text, Number, Date with

text choices, choices not editable

DropDownList

 (http://docs.telerik.com/kendo-

ui/api/javascript/ui/dropdownlist)

AwareApp_ComboField

Plain Text, Number, Date with

text choices, choices editable

ComboBox

(http://docs.telerik.com/kendo-

ui/api/javascript/ui/combobox)

AwareApp_ComboField

Date without choices DatePicker

(http://docs.telerik.com/kendo-

ui/api/javascript/ui/datepicker)

AwareApp_DateField

Timestamp DateTimePicker

http://docs.telerik.com/kendo-

ui/api/javascript/ui/datetimepicker

AwareApp_DateTimeField

Yes/No (displayed as checkbox) None AwareApp_CheckboxField

Yes/No (displayed as a switch) Switch

http://docs.telerik.com/kendo-

ui/api/javascript/mobile/ui/switch

AwareApp_SwitchField

Plain Text with choices

represented as checkboxes

None AwareApp_CheckboxGroupFi

eld

Plain Text with choices

represented as radio buttons

None AwareApp_RadioButtonGrou

pField

PlainText with multi-selector MultiSelect

http://docs.telerik.com/kendo-

ui/api/javascript/ui/multiselect

AwareApp_TagField

PlainText with HTML format Editor

http://docs.telerik.com/kendo-

ui/api/javascript/ui/editor

AwareApp_HtmlEditorField

Document Upload

http://docs.telerik.com/kendo-

ui/api/javascript/ui/upload

AwareApp_DocumentField

Picture (not represented as

signature)

Upload

http://docs.telerik.com/kendo-

ui/api/javascript/ui/upload

AwareApp_PictureField

Picture (represented as signature) None AwareApp_SignatureField

Shortcut None AwareApp_ShortcutField

Reference represented by a drop

down

DropDownList

 (http://docs.telerik.com/kendo-

ui/api/javascript/ui/dropdownlist)

AwareApp_SelectReferenceFi

eld

Reference represented by a multi-

selector

MultiSelect

http://docs.telerik.com/kendo-

ui/api/javascript/ui/multiselect

AwareApp_TagReferenceField

Reference represented by a “swap

select”

None AwareApp_SwapSelectField

HTML cell None AwareApp_HtmlFiield

Gauge cell (linear) LinearGauge

http://docs.telerik.com/kendo-

ui/api/javascript/dataviz/ui/lineargauge

AwareApp_GaugeField

Gauge cell (radial) RadialGauge

http://docs.telerik.com/kendo-

ui/api/javascript/dataviz/ui/radialgauge

AwareApp_GaugeField

Google Map cell None AwareApp_GoogleMapField

Number displayed as slider Slider

http://docs.telerik.com/kendo-

ui/api/javascript/ui/slider

AwareApp_SliderField

http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/combobox
http://docs.telerik.com/kendo-ui/api/javascript/ui/combobox
http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker
http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker
http://docs.telerik.com/kendo-ui/api/javascript/ui/datetimepicker
http://docs.telerik.com/kendo-ui/api/javascript/ui/datetimepicker
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/switch
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/switch
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/lineargauge
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/lineargauge
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/radialgauge
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/radialgauge
http://docs.telerik.com/kendo-ui/api/javascript/ui/slider
http://docs.telerik.com/kendo-ui/api/javascript/ui/slider

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 84 of 90

8.6 Modifying default behavior of menu in visual perspectives

The idea here is very similar. You have two scripts available – initialization and render scripts.
The initialization script has a chance to modify the configuration of the menu widgets (almost all

menu types except Plain List are implemented by their own Kendo UI widget (see the table
below). The render script can call the methods of the widget once it has been drawn.

The following objects are exposed to the initialization script:

 “config” – this object represents Kendo UI configuration of the menu widget

 “parser” – the controller object (AwareApp_VPParser) – see the code in the file
AwareIM/Tomcat/webapps/AwareIM/aware_kendo/parsers/vpParser.

js

For example to add some custom menu item to a toolbar menu you could write the following

script:

config.items.push ({

 type: “button”,

 spriteCssClass: “fa fa-edit”,

 text: “My Menu Item”,

 click: function () {

 alert (“this is my menu item”);

 }

});

Menu type Kendo UI widget Kendo UI reference

Toolbar ToolBar http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar

Standard Menu Menu http://docs.telerik.com/kendo-ui/api/javascript/ui/menu

Panel Bar PanelBar http://docs.telerik.com/kendo-ui/api/javascript/ui/panelbar

Tree TreeView http://docs.telerik.com/kendo-ui/api/javascript/ui/treeview

8.7 Modifying default behavior and presentation of content panels in
visual perspectives

To modify the default behavior and presentation of content panels in visual perspectives you need
to go to a particular visual perspective that you want to modify, select the content panel and then

click on the “Scripts” property in the list of properties of the content panel.

The idea here is the same – you have two scripts as before. However, there are no Kendo UI

widgets to modify here – you can only modify the markup of the content panel (either during
initialization or after it has been drawn).

Two objects are exposed for the initialization script:

http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar
http://docs.telerik.com/kendo-ui/api/javascript/ui/menu
http://docs.telerik.com/kendo-ui/api/javascript/ui/panelbar
http://docs.telerik.com/kendo-ui/api/javascript/ui/treeview

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 85 of 90

 “config” – this is the configuration of the Aware IM “panel” object, the code of which

is in AwareIM/Tomcat/webapps/AwareIM/aware_kendo/panel.js
The markup of the panel is stored in the “bodyContent” property of the object

config.bodyContent. This is the markup you are most likely to modify here
“parser” object – this is the controller (AwareApp_Dashboard in

AwareIM/Tomcat/webapps/AwareIM/aware_kendo/parsers/dashboard

.js

8.8 AwareApp object

When writing advanced scripts as described above you can use the AwareApp Javascript object
that contains some useful static methods. This is an example of calling one of these methods:

var panelId = AwareApp.getPanelId (“main”, “Accounts”, “My

Accounts”);

The code of the object is located here:
AwareIM/Tomcat/webapps/AwareIM/aware_ext/awareApp.js

The following methods can be used:

1. getPanelId (frameName, tabName, contentPanelName)

This method returns the unique id of the content panel in a visual perspective.

var id = AwareApp.getPanelId (‘main’, ‘Tab1’, ‘Content Panel1’);

Parameters:

frameName – name of the frame in the visual perspective that contains the panel

tabName – name of the tab inside the frame that contains the panel

contentPanelName – name of the content panel

2. getFramePanelId (frameName)

This method returns the unique id of the frame in a visual perspective.

var id = AwareApp.getFramePanelId (‘main’);

Parameters:

frameName – name of the frame in the visual perspective

3. getTabPanelId (frameName, tabName)

This method returns the unique id of the tab in a visual perspective.

var id = AwareApp.getTabPanelId (‘main’, ‘Tab1’);

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 86 of 90

Parameters:

frameName – name of the frame in the visual perspective that contains the panel

tabName – name of the tab inside the frame that contains the panel

4. isRTL ()

Return true if the current user uses right-to-left layout

5. getMainTabPanel ()

If a visual perspective has tabs return the tab panel holding the tabs.

6. getProcessId ()

Return the id of the currently running process or -1 if there are no processes currently running.

7. isTestingMode ()

Return true if the current user is running in the testing mode

8. startProcess, runQuery and other methods mentioned in the User

Guide

Please refer to the “Links to Aware IM operations” section in the User Guide, that explains how

to set up links to perform operations. All functions mentioned there can be used from your
Javascript.

8.9 Using Javascript to integrate custom Cordova plugins for native
mobile applications

Cordova plugins are components that provide access to some built-in features of mobile phones,
(such as camera or contacts), for which there is no Javascript access. When components are

integrated into the system these features become available through some special Javascript
functions that the plugin makes available to the developer. Cordova plugins can only be used in
native mobile applications.

Aware IM integrates some Cordova plugins out-of- the-box and provides rule actions that

activate them (for example, MOBILE PUSH or MOBILE CAMERA SNAP INTO. However,
there are many plugins around and it is impossible to integrate all of them into Aware IM.

Still there is a way to do this by adding some custom Javascript to your application. The
following section explains how to do it.

This is the high level overview of what needs to be done:

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 87 of 90

1. Study the documentation of the Cordova plugin to fully understand Javascript methods

that it exposes
2. Write the Javascript that calls the appropriate Javascript function that the plugin provides

a. Give this function the data obtained from Aware IM if necessary. For example,

read the data from the database and provide this data to the function of the plugin.
The useful Aware IM function that can be used here is

AwareApp.getObjectData()
b. Handle the return of this function if necessary – for example write the data

returned by the function to the database. Useful Aware IM functions for this are

AwareApp.createOrUpdateObject() and

AwareApp.startProcessWithInit()
3. Define panel operations or menu items in the mobile part of your business space version

(using the Configuration Tool) that would run this Javascript. You should select an
operation or menu item of the “Execute Javascript” type for this.

4. Build a native mobile application for your business space version using the “Build Native
Mobile Application” command in the Configuration Tool. This will create a zip file.

5. Uzip this zip file somewhere. Find the config.xml file in the root of the unzipped

application and open it for editing.
6. Find the section in this file that lists the plugins used by the application, for example:

<plugin name="cordova-plugin-camera" spec="2.0.0" />

Add the definition of the Cordova plugin you need to integrate – look up the
documentation of the plugin for details of the plugin name and version number

7. Zip up the application again and use the PhoneGap build to create application files in the
native format of the mobile phone

Let’s look at an example. We will be integrating a Cordova plugin for Contacts into the CRM
mobile sample application.

The documentation of the plugin can be found here: https://github.com/apache/cordova-plugin-

contacts

As we can see the plugin provides the navigator.contacts object that can be used to

create contacts, find existing contact or pick a particular one. Let’s add the following
functionality to the CRM application:

 From the form of a customer or from a customer list create a phone contact populated
with the information from the customer record in the application

 Pick a contact from the list of phone contacts and send this contact an email that
includes some information stored in the application

8.9.1 Creating a contact on the phone

We need to use the “create” method of the navigator.contacts object and provide contact
data available in the customer record that we are parked on. Retrieving the data can be done using

the AwareApp.getObjectData function. It has the following signature:

https://github.com/apache/cordova-plugin-contacts
https://github.com/apache/cordova-plugin-contacts

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 88 of 90

 getObjectData: function (objectName, objectId,

callBackFunction)

ObjectName and objectId identify the record to retrieve and callBackFunction

specifies a function that will be called when the data has been retrieved. The function will be
called with the object storing the retrieved values.

How do we get object name and id? When we define an Aware IM operation of the “Execute
Script” type Aware IM automatically defines the following objects that we can use in our

Javascript:

 parser

 context

The parser object should be already familiar and the context object stores an array of

objects with objectName and objectId attributes. The record we are parked on is the first

and only one in this array. So to get objectName we use the following

context[0].objectName; and to get object id we use context[0].objectId

So the Javasrcipt we need to write to create a contact looks like this:

AwareApp.getObjectData (

 context[0].objectName,

 context[0].objectId,

 function (objectData)

 {

 navigator.contacts.create ({

 “displayName”: objectData[“FirstName”] + “ “ +

objectData[“LastName”],

 “birthday”: kendo.parseDate

(objectData[“DateOfBirth”], “dd/MM/yyyy”, “en-US”)

 });

 }

);

Note that here “displayName” and “birthday” are the names of the attribute of the Contact object

on the phone exposed by the plugin, whereas “FirstName”, “LastName” and “DateOfBirth” are
the names of the attributes of the Customer object in the CRM application. Note also that all
Aware IM attribute values are strings and if the plugin requires some other type (for example,

date), then the strings need to be converted to the appropriate type.

The next step is to create operations of the “Execute Script” type to the form and customer list.
We can add a panel operation to the “Editing Mobile” form of the Customer object and an
operation with record to the “Customer – all mobile” query. We then specify the above script as a

parameter of the operation.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 89 of 90

8.9.2 Send email to the selected contact

We need to use the pickContact method of the navigator.contacts object to display a
list of contacts, let the user pick one and then we need to start a process in the application to send

an email to the email address of the contact picked by the user.

The email address returned by the plugin needs to be saved in some temporary object and then

this object can be used in the process. So we will create a temporary business object (persistence

type – memory) called ContactParam with the single EmailAddress attribute. We will then

create a process called SendEmailToContact with the ContactParam object as its input.

The process will then use the SEND action to send any email to this email address (the email can
use tag expressions to retrieve some information from the system – for example, from

SystemSettings or from the logged in user).

To start a process we will use the AwareApp.startProcessWithInit function. It has the

following signature:

startProcessWithInit: function (procName, renderOption, objName,

initValues, context)

Here procName is the name of the process to start, renderOption is where to display the

results of the process (we can use null), objName is the name of the parameter object,

initValues is the object storing values of the parameter object and context contains additional

parameter objects (null in our case)

So our Javascript can look like this:

navigator.contacts.pickContact (function (contact)

{

 var email = contact.emals[0].value;

 AwareApp.startProcessWithInit (

 “SendEmailToContact”,

 null,

 “ContactParam”,

 { “EmailAddress” : email }

},

function (error { console.log (error); }

);

Then we just need to add a command of the “Execute Script” type to the mobile menu of the

application.

Aware IM 8.8 Programmer's Reference

Copyright © 2002-2023 Awaresoft Pty Ltd Page 90 of 90

Appendix A: correspondence of attribute types and Java

types

The following table lists the mapping between the Aware IM attribute types and the Java types

used in certain methods such as getAttributeValue and setAttributeValue of the

IObject interface.

Attribute Type Java Type

Plain Text String

Number Long or Double depending on the format of the

Number

Date org.openadaptor.util.DateHolder

Timestamp org.openadaptor.util.DateTimeHolder

Duration com.bas.utils.Duration

Yes/No Boolean

Document or Picture org.openadaptor.dataobjects.DataObject
with the following sub-attributes:

 DOCDATA (Binary)

 DOCTYPE (Plain Text)

Binary byte []

