2025/11/12 04:51 1/10 Writing client-side plugins

Table of Contents

Writing client-side plugins
Modifying default presentation of individual fields on formsccccccccceiiinnn, 2

Modifying default behavior of menu in visual perspectivescccccviiiiiiiiiinnnnn, 5
Modifying default behavior and presentation of content panels in visual perspectives
... 5
AWAreAPP ODJECT ... e 6
Using Javascript to integrate custom Cordova plugins for native mobile applications
... 7
Creating a contact on the Phone ... 8
Send email to the selected CONTACE ...t 9

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 04:51 2/10 Writing client-side plugins

Programmers Reference, Client Side Plugins
Writing client-side plugins

In Aware IM you can not only add plugins for the server (such as custom processes, channels or
functions), but you can also add plugins that execute on the client within a web browser. Most of the
time you would write these plugins in order to add your custom user interface functionality, or modify
the default Aware IM user interface behaviour.

All client-side plugins must be written in Javascript and in most cases you need the knowledge of the
Kendo Ul Javascript library from Telerik and a popular open source Javascript library called jQuery .
The description that follows assumes that the reader is familiar with Javascript, Kendo Ul library and

jQuery.
There are several types of the client-side plugins you can add in Aware IM:

Modify the default behaviour and presentation of forms

Modify the default behaviour and presentation of form sections in forms

Modify the default presentation of individual fields within forms

Modify the default presentation and behaviour of queries

Modify the default presentation and behaviour of content panels inside visual perspectives

Uik wh -

We will look at each of these client-side plugins separately

Modifying default presentation of individual fields on forms

To modify the default presentation of an individual field on an object form you need to go to the
presentation properties of the corresponding attribute and click on the “Advanced” property. There is
only one script available for you here.

As explained in the “Architecture of the client-side code” the controller of the form prepares the HTML
markup of the form as well as the list of Kendo Ul widgets that the form includes. Apart from other
things the markup of the form contains markups of individual fields present on the form. And the
collection of widgets for the form includes widgets used by individual fields (note that not all fields use
widgets, some use markup only). Each type of field on the form is represented by its own Aware IM
Javascript object (see the table below).

The form controller asks every individual field on the form to prepare its markup and the collection of
widgets. Then it assembles the result into the final markup and widget collection of the form. The
script for each indivisual field is executed just before it is given to the form controller, so that the
script has a chance to modify the markup or widget configuration.

There are three objects exposed to the script:

1. “field” - this is Aware IM object representing the field (see the table below)

2. “markup” - this is the HTML markup of the field (jQuery object)

3. “config” - this is the object that represents a widget configuration of the field or null if the field
does not use a widget. The object has the following properties:

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/tag/programmers_reference?do=showtag&tag=Programmers_Reference
http://www.awareim.com/dokuwiki/tag/client_side_plugins?do=showtag&tag=Client_Side_Plugins
http://www.telerik.com/kendo-ui
https://jquery.com/

2025/11/12 04:51 3/10 Writing client-side plugins

1. “type” - type of the widget
2. “id” - the id of the element in the markup used by the widget
3. “config” - the Kendo Ul configuration of the widget

You can modify modify any of these object. For example, if you want to hide the field you can write
the following script:

markup.css (“display, “none”);

Or if you want to change which tools are available for an HTML editor field (see
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor#configuration-tools), you could write the
following script:

config.config.tools = [“bold”, “italic”, “underline”]

There are some useful methods of the “field” object that you can use in your script (the code of all all
the objects representing different fields is in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/field/fields.js file.

1. field.getAttributeName () - retrieve the name of the object attribute
2. field.getObjectName () - retrieve the name of the object
3. field.getObjectld () - retrieve the id of the object

and so on.

Note that if you want to access the field after it has already been drawn you need to find the field on
the form and so you need to modify the “render” script of the form, like so, for example:

var field = parser.getField (“Account”, “Main”);
var value = field.getValue ();

The following table lists all different field types and the corresponding Kendo Ul widgets.

Aware IM
attribute Kendo Ul widget Aware IM field object
type

Plain Text (no
choices, 1 None AwareApp_TextField
line)

Plain Text (no
choices, None AwareApp_TextAreaField
several lines)
Plain Text,
Number,
Date with NumericText Box

radio or (http://docs.telerik.com/kendo-ui/api/javascript/ui/numerictextbox)
checkbox
choices
Plain Text,
Number,
Date with DropDownlList

text choices, |(http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist)
choices not
editable

AwareApp_NumberField

AwareApp_ComboField

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/editor#configuration-tools
http://docs.telerik.com/kendo-ui/api/javascript/ui/numerictextbox
http://docs.sencha.com/extjs/5.0/apidocs/#!/api/Ext.form.field.Radio
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist

2025/11/12 04:51 4/10 Writing client-side plugins
Plain Text,

Number,

Date with ComboBox AwareApp_ComboField

text choices, |(http://docs.telerik.com/kendo-ui/api/javascript/ui/combobox) PP

choices

editable

Date without |DatePicker AwareApp DateField

choices (http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker) PP_

. DateTimePicker , .
Timestamp http://docs.telerik.com/kendo-ui/api/javascript/ui/datetimepicker AwareApp_DateTimeField
Yes/No
(displayed as |None AwareApp_CheckboxField
checkbox)

I;Z/pl\llgyed as switch AwareApp_SwitchField

a switch) http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/switch -

Plain Text

with choices

represented [None AwareApp_CheckboxGroupField
as

checkboxes

Plain Text

with choices

represented [None AwareApp_RadioButtonGroupField
as radio

buttons

PlainText .

. . MultiSelect .
\sNglcgcrtrg;It" http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect AwareApp_TagField
PlainText Editor
g)'::q:tTML http://docs.telerik.com/kendo-ui/api/javascript/ui/editor AwareApp_HtmiEditorField
Document Upload AwareApp_DocumentField

http://docs.telerik.com/kendo-ui/api/javascript/ui/upload

Picture (not

Upload . ,
represented i . i ani . . AwareApp_PictureField
as signature) http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
Picture
(represented [None AwareApp_SignatureField
as signature)
Shortcut None AwareApp_ShortcutField
Reference
represented |DropDownlList .
by a drop (http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist) AwareApp_SelectReferenceField
down
Reference
represented |MultiSelect ,
by a multi- |http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect AwareApp_TagReferencefield
selector
Reference
represented .
by a “swap None AwareApp_SwapSelectField
select”
HTML cell None AwareApp_HtmlFiield
Gauge cell [LinearGauge .
(linear) http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/lineargauge AwareApp_GaugeField
Gauge cell |[RadialGauge .
(radial) http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/radialgauge AwareApp_GaugeField
S;?gle Map None AwareApp_GoogleMapField

Documentation -

http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/combobox
http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker
http://docs.telerik.com/kendo-ui/api/javascript/ui/datetimepicker
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/switch
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/lineargauge
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/radialgauge

2025/11/12 04:51

5/10 Writing client-side plugins

Number
displayed as
slider

Slider

http://docs.telerik.com/kendo-ui/api/javascript/ui/slider

AwareApp_SliderField

Modifying default behavior of menu in visual perspectives

The idea here is very similar. You have two scripts available - initialization and render scripts. The
initialization script has a chance to modify the configuration of the menu widgets (almost all menu
types except Plain List are implemented by their own Kendo Ul widget (see the table below). The
render script can call the methods of the widget once it has been drawn.

The following objects are exposed to the initialization script:

1. “config” - this object represents Kendo Ul configuration of the menu widget
2. “parser” - the controller object (AwareApp_VPParser) - see the code in the file

AwarelM/Tomcat/webapps/AwarelM/aware_kendo/parsers/vpParser.js

For example to add some custom menu item to a toolbar menu you could write the following script:

config.items

.push ({

type: “button”,

spriteCssClass: “fa fa-edit”,

text: “My Menu Item”,

click: function () {

alert (“this is my menu item”);

}

2

Menu type |Kendo Ul widget Kendo Ul reference

Toolbar ToolBar http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar

Standard Menu|Menu

http://docs.telerik.com/kendo-ui/api/javascript/ui/menu

Panel Bar

PanelBar

http://docs.telerik.com/kendo-ui/api/javascript/ui/panelbar

Tree

TreeView

http://docs.telerik.com/kendo-ui/api/javascript/ui/treeview

Modifying default behavior and presentation of content
panels in visual perspectives

To modify the default behavior and presentation of content panels in visual perspectives you need to
go to a particular visual perspective that you want to modify, select the content panel and then click
on the “Scripts” property in the list of properties of the content panel.

The idea here is the same - you have two scripts as before. However, there are no Kendo Ul widgets

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/slider
http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar
http://docs.telerik.com/kendo-ui/api/javascript/ui/menu
http://docs.telerik.com/kendo-ui/api/javascript/ui/panelbar
http://docs.telerik.com/kendo-ui/api/javascript/ui/treeview

2025/11/12 04:51 6/10 Writing client-side plugins

to modify here - you can only modify the markup of the content panel (either during initialization or
after it has been drawn).

Two objects are exposed for the initialization script:

1. “config” - this is the configuration of the Aware IM “panel” object, the code of which is in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/panel.js

The markup of the panel is stored in the “bodyContent” property of the object config.bodyContent.
This is the markup you are most likely to modify here

“parser” object - this is the controller (AwareApp_Dashboard in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/parsers/dashboard.js

AwareApp object
When writing advanced scripts as described above you can use the AwareApp Javascript object that
contains some useful static methods. This is an example of calling one of these methods:
var panelld = AwareApp.getPanelld (“main”, “Accounts”, “My Accounts”);
The code of the object is located here: AwarelM/Tomcat/webapps/AwarelM/aware_ext/awareApp.js
The following methods can be used:
1. getPanelld (frameName, tabName, contentPanelName)
This method returns the unique id of the content panel in a visual perspective.
var id = AwareApp.getPanelld (‘main’, ‘Tabl’, ‘Content Panell’);
Parameters:
frameName - name of the frame in the visual perspective that contains the panel
tabName - name of the tab inside the frame that contains the panel
contentPanelName - name of the content panel
1. getFramePanelld (frameName)
This method returns the unique id of the frame in a visual perspective.
var id = AwareApp.getFramePanelld (‘main’);
Parameters:
frameName - name of the frame in the visual perspective
1. getTabPanelld (frameName, tabName)

This method returns the unique id of the tab in a visual perspective.

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 04:51 7/10 Writing client-side plugins

var id = AwareApp.getTabPanelld (‘main’, ‘Tabl’);
Parameters:
frameName - name of the frame in the visual perspective that contains the panel
tabName - name of the tab inside the frame that contains the panel
1. isRTL ()
Return true if the current user uses right-to-left layout
1. getMainTabPanel ()
If a visual perspective has tabs return the tab panel holding the tabs.
1. getProcessld ()
Return the id of the currently running process or -1 if there are no processes currently running.
1. isTestingMode ()
Return true if the current user is running in the testing mode
1. startProcess, runQuery and other methods mentioned in the User Guide

Please refer to the “Links to Aware IM operations” section in the User Guide, that explains how to set
up links to perform operations. All functions mentioned there can be used from your Javascript.

Using Javascript to integrate custom Cordova plugins for
native mobile applications

Cordova plugins are components that provide access to some built-in features of mobile phones,
(such as camera or contacts), for which there is no Javascript access. When components are
integrated into the system these features become available through some special Javascript functions
that the plugin makes available to the developer. Cordova plugins can only be used in native mobile
applications.

Aware IM integrates some Cordova plugins out-of- the-box and provides rule actions that activate
them (for example, MOBILE PUSH or MOBILE CAMERA SNAP INTO. However, there are many plugins
around and it is impossible to integrate all of them into Aware IM.

Still there is a way to do this by adding some custom Javascript to your application. The following
section explains how to do it.

This is the high level overview of what needs to be done:

1. Study the documentation of the Cordova plugin to fully understand Javascript methods that it
exposes
2. Write the Javascript that calls the appropriate Javascript function that the plugin provides
1. Give this function the data obtained from Aware IM if necessary. For example, read the

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 04:51 8/10 Writing client-side plugins

data from the database and provide this data to the function of the plugin. The useful
Aware IM function that can be used here is AwareApp.getObjectData()

2. Handle the return of this function if necessary - for example write the data returned by
the function to the database. Useful Aware IM functions for this are
AwareApp.createOrUpdateObject() and AwareApp.startProcessWithinit()

3. Define panel operations or menu items in the mobile part of your business space version (using
the Configuration Tool) that would run this Javascript. You should select an operation or menu
item of the “Execute Javascript” type for this.

4. Build a native mobile application for your business space version using the “Build Native Mobile
Application” command in the Configuration Tool. This will create a zip file.

5. Uzip this zip file somewhere. Find the config.xml file in the root of the unzipped application and
open it for editing.

6. Find the section in this file that lists the plugins used by the application, for example:

<plugin name="cordova-plugin-camera” spec="2.0.0" />

Add the definition of the Cordova plugin you need to integrate - look up the documentation of the
plugin for details of the plugin name and version number

1. Zip up the application again and use the PhoneGap build to create application files in the native
format of the mobile phone

Let’s look at an example. We will be integrating a Cordova plugin for Contacts into the CRM mobile
sample application.

The documentation of the plugin can be found here:
https://github.com/apache/cordova-plugin-contacts

As we can see the plugin provides the navigator.contacts object that can be used to create contacts,
find existing contact or pick a particular one. Let’s add the following functionality to the CRM
application:

1. From the form of a customer or from a customer list create a phone contact populated with the
information from the customer record in the application

2. Pick a contact from the list of phone contacts and send this contact an email that includes some
information stored in the application

Creating a contact on the phone

We need to use the “create” method of the navigator.contacts object and provide contact data
available in the customer record that we are parked on. Retrieving the data can be done using the
AwareApp.getObjectData function. It has the following signature:

getObjectData: function (objectName, objectld, callBackFunction)

ObjectName and objectld identify the record to retrieve and callBackFunction specifies a function that
will be called when the data has been retrieved. The function will be called with the object storing the
retrieved values.

How do we get object name and id? When we define an Aware IM operation of the “Execute Script”
type Aware IM automatically defines the following objects that we can use in our Javascript:

Documentation - http://www.awareim.com/dokuwiki/

https://github.com/apache/cordova-plugin-contacts

2025/11/12 04:51 9/10 Writing client-side plugins

1. parser
2. context

The parser object should be already familiar and the context object stores an array of objects with
objectName and objectld attributes. The record we are parked on is the first and only one in this
array. So to get objectName we use the following context[0].objectName; and to get object id we use
context[0].objectld

So the Javasrcipt we need to write to create a contact looks like this:
AwareApp.getObjectData (

context[0].objectName,

context[0].objectld,

function (objectData)

{

navigator.contacts.create ({

“displayName”: objectData[“FirstName”] + “ “ + objectData[“LastName”],
“birthday”: kendo.parseDate (objectData[“DateOfBirth”], “dd/MM/yyyy”, “en-US")
b

}

);

Note that here “displayName” and “birthday” are the names of the attribute of the Contact object on
the phone exposed by the plugin, whereas “FirstName”, “LastName” and “DateOfBirth” are the
names of the attributes of the Customer object in the CRM application. Note also that all Aware IM
attribute values are strings and if the plugin requires some other type (for example, date), then the
strings need to be converted to the appropriate type.

The next step is to create operations of the “Execute Script” type to the form and customer list. We

can add a panel operation to the “Editing Mobile” form of the Customer object and an operation with
record to the “Customer - all mobile” query. We then specify the above script as a parameter of the
operation.

Send email to the selected contact

We need to use the pickContact method of the navigator.contacts object to display a list of contacts,
let the user pick one and then we need to start a process in the application to send an email to the
email address of the contact picked by the user.

The email address returned by the plugin needs to be saved in some temporary object and then this
object can be used in the process. So we will create a temporary business object (persistence type -
memory) called ContactParam with the single EmailAddress attribute. We will then create a process

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 04:51 10/10 Writing client-side plugins

called SendEmailToContact with the ContactParam object as its input. The process will then use the
SEND action to send any email to this email address (the email can use tag expressions to retrieve
some information from the system - for example, from SystemSettings or from the logged in user).

To start a process we will use the AwareApp.startProcessWithlinit function. It has the following
signature:

startProcessWithinit: function (procName, renderOption, objName, initValues, context)

Here procName is the name of the process to start, renderOption is where to display the results of the
process (we can use null), objName is the name of the parameter object, initValues is the object
storing values of the parameter object and context contains additional parameter objects (null in our
case)

So our Javascript can look like this:
navigator.contacts.pickContact (function (contact)
{

var email = contact.emals[0].value;
AwareApp.startProcessWithinit (
“SendEmailToContact”,

null,

“ContactParam”,

{ “EmailAddress” : email }

b

function (error { console.log (error); }
);

Then we just need to add a command of the “Execute Script” type to the mobile menu of the
application.

From:
http://www.awareim.com/dokuwiki/ - Documentation

Permanent link:
http://www.awareim.com/dokuwiki/docs/3500/0800?rev=1680672669 8
(=] pe e

Last update: 2023/04/05 05:31

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/
http://www.awareim.com/dokuwiki/docs/3500/0800?rev=1680672669

	Table of Contents
	Writing client-side plugins
	Modifying default presentation of individual fields on forms
	Modifying default behavior of menu in visual perspectives
	Modifying default behavior and presentation of content panels in visual perspectives
	AwareApp object
	Using Javascript to integrate custom Cordova plugins for native mobile applications
	Creating a contact on the phone
	Send email to the selected contact

