2025/11/12 02:02 1/15 Writing client-side plugins

Table of Contents

Writing client-side PIUGINS ... 2
Architecture of the client-side CoOdecoooiiiiiiiiiiii 2
Modifying default behavior and presentation of queriescc.ccccccciiiiiiiiiiinnnn, 3
Modifying default behavior and presentation of formsc..ccccccoiiiiiiiiiiiinnnn, 5
Modifying default behavior and presentation of form sectionscccccvvvvenn, 7
Modifying default presentation of individual fields on formsccocceiiiinnn. 7
Modifying default behavior of menu in visual perspectivescc.ccocciiiiiiiiiennne. 10
Modifying default behavior and presentation of content panels in visual perspectives

... 10
AWAr@APP ODJECToooii e 11
Using Javascript to integrate custom Cordova plugins for native mobile applications

... 12

Creating a contact 0N the PhonE ... s 13
Send email to the selected CONLACE ..o 14

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 02:02 2/15 Writing client-side plugins

Programmers Reference, Client Side Plugins
Writing client-side plugins

In Aware IM you can not only add plugins for the server (such as custom processes, channels or
functions), but you can also add plugins that execute on the client within a web browser. Most of the
time you would write these plugins in order to add your custom user interface functionality, or modify
the default Aware IM user interface behaviour.

All client-side plugins must be written in Javascript and in most cases you need the knowledge of the
Kendo Ul Javascript library from Telerik and a popular open source Javascript library called jQuery .
The description that follows assumes that the reader is familiar with Javascript, Kendo Ul library and

jQuery.
There are several types of the client-side plugins you can add in Aware IM:

Modify the default behaviour and presentation of forms

Modify the default behaviour and presentation of form sections in forms

Modify the default presentation of individual fields within forms

Modify the default presentation and behaviour of queries

Modify the default presentation and behaviour of content panels inside visual perspectives

Uik wh -

We will look at each of these client-side plugins separately

Architecture of the client-side code

Before we explain how to write scripts for different components it is useful if a developer understands
roughly the general architecture of the client-side code.

This is what happens behind the scenes when a screen is displayed in the browser by Aware IM. A
screen (usually represented by visual perspectives) consists of multiple queries, forms, content panels
and so on (we will call them “components”).

Each component, such as a form or a query is handled by the appropriate “controller” (also called
“parser”). The fist thing the controller does is ask the server to provide the definition of the layout of
the component. Then the controller parses XML returned by the server and prepares two Javascript
objects:

1. jQuery object containing HTML of the component (form or query). This object is called
“markup”.

2. An array of “widget configurations”. Each member of the array represents configuration for
some widget of the Kendo Ul library that the component includes. For example a query usually
just includes a single widget that implements a query, such as the grid widget, for example. But
a form may have a number of widgets - almost one per each attribute displayed by the form

Then the screen to be displayed is assembled from HTML markups of different components that the
screen contains and the final HTML for the screen is built. This HTML is then given to the Kendo Ul
library, which creates all widgets of the screen based on the screen HTML and configurations of the

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/tag/programmers_reference?do=showtag&tag=Programmers_Reference
http://www.awareim.com/dokuwiki/tag/client_side_plugins?do=showtag&tag=Client_Side_Plugins
http://www.telerik.com/kendo-ui
https://jquery.com/

2025/11/12 02:02 3/15 Writing client-side plugins

widgets prepared by the controllers. Kendo Ul library modifies this HTML to add its own classes and
performs other steps to ensure that its widgets are displayed correctly. Finally the resulting HTML
document is given to the browser which draws it on the screen.

To summarize:

1. A screen consists of components. Each component is represented by its own controller

2. The process starts by each controller asking the server for the definition of components

3. The controller then prepares HTML markup of the component and configurations of containing
widgets

4. The HTML of the screen is created from the markups of components returned by controllers

5. The HTML and widget configurations are then given to the Kendo Ul library to prepare its
widgets

6. Final HTML of the screen is produced and is drawn by the browser.

So where in this process do the client scripts come in? For most components there are two types of
scripts - the “initialization” script and the “render” script. As a developer you can define one or both -
depending on what the script needs to do. The initialization script if defined is run by Aware IM just
before the controller of the component returns the markup of the controller and the array of widget
configurations (so immediately after step 3 above). The script, therefore, has a chance to modify the
markup returned by the controller or the configuration of any of the widgets of the component.

The markup can be modified using jQuery functions that manipulate HTML. The script can only modify
the markup for the component, but not the entire screen, because the entire screen hasn’t been built
yet.

Widget configurations represent Javascript objects with properties described by Kendo Ul API
Reference. For example, to see the APl Reference of the Kendo Ul grid widget that implements Aware
IM queries in the standard form go to http://docs.telerik.com/kendo-ui/api/javascript/ui/grid and look
up the Configuration section at the top. Note that you can only modify configuration of the widget
(which also includes Events), but you cannot use Methods of the widget in the initialization script.

The render script, though, runs after everything has been drawn on the screen - i.e. after step 6
above. By this time all Kendo Ul widgets will have been already created, so the script can access the
widget and call its methods (see the Methods section in the Kendo Ul APl Reference for each widget).
Configuration objects cannot be used at this stage.

The render script can also access the final browser document and manipulate it if need be using
jQuery functions. The following sections describe how this can be done in more detail.

Modifying default behavior and presentation of queries

To modify the default behavior and presentation of queries you need to go to a particular query that
you want to modify and click on the “Scripts” property in the list of properties of the query. You can
define “initialization” script or “render” script or both (see “Architecture of the Client-side Code”)

The following objects are exposed to the initialization script:

1. “config” object - this object represents Kendo Ul configuration of the main widget implementing
the query (see the table below)

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/grid

2025/11/12 02:02 4/15 Writing client-side plugins

2. “markup” object - HTML markup prepared by the controller
3. “parser” object - the controller itself
4. “widgets” - an array of all widget configurations for the query

|Query presentation type|Kendo Ul widget|Kendo Ul reference|

Standard Grid http://docs.telerik.com/kendo-ui/api/javascript/ui/grid
Custom (Custom
Data Template, List View |http://docs.telerik.com/kendo-ui/api/javascript/ui/listview

scroll view unticked)

Custom (Custom
Data Template,
scroll view ticked)

Custom (Mobile Data|Mobile

Scroll

View http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/scrollview

http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/listview

Template) List View

Calendar/Scheduler |Scheduler |http://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
Chart Chart http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/chart
Gantt Gantt http://docs.telerik.com/kendo-ui/api/javascript/ui/gantt

It is usually unnecessary to modify the markup, but you are welcome to modify the configuration of
the widget.

For example, the following script will change the alignment of the column that corresponds to the
“Status” attribue:

for (vari = 0; i < config.columns.length; ++ i)

{

if (config.columns[il.field == “Status”)

{

config.columnsli].attributes = { alignment: “right” }
}

}

The following script will make the grid “groupable”, i.e allow dragging the columns to a special area in
order to group the grid by this column:

config.groupable = true;

The “parser” object represents the controller and allows you to access certain properties of the
system that you may need. The type of this object depends on the type of the query representation
and is provided in the table below:

Query presentation|Aware IM Javascript object Source code

type type
Standard AwareApp_QuerylLayoutParser |AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/queryLayoutParser.js
Custom (without

AwareApp_CustomLayoutParser |AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/customLayoutParser.js

scroll view)

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/grid
http://docs.telerik.com/kendo-ui/api/javascript/ui/listview
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/scrollview
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/listview
http://docs.telerik.com/kendo-ui/api/javascript/ui/scheduler
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/chart
http://docs.telerik.com/kendo-ui/api/javascript/ui/gantt

2025/11/12 02:02 5/15 Writing client-side plugins

Custom (with scroll
view)

Custom (with
mobile template)

AwareApp_ScrollViewParser AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/scrollViewParser.js

AwareApp_MobileListViewParser|AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/customMobileParser.js

Chart AwareApp_ChartParser AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/chartParser.js
Calendar/Scheduler|/AwareApp_CalendarParser AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/calendarParser.js
Gantt AwareApp_GanttParser AwarelM/Tomcat/webapps/AwarelM/aware_ext/parsers/ganttParser.js

The “widgets” object representing an array of all widgets that the query has can be used to modify
other widgets - for example, toolbars generated to represent query operations (if these are defined
for the query).

Each member of the “widgets” array has the following properties:

1. type (the type of the Kendo Ul widget)
2. id (the unique id in the markup of the query that the widget uses)
3. config (the Kendo Ul configuration of the widget)

So to modify a toolbar, for example (http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar) and
stop it being resizable you would find the toolbar in the array and modify its “config” property like
this:

for (vari = 0; i < widgets.length; ++ i)
{

if (widgets[i].type == “toolbar”)
widgetsl[i].config.resizable = false;

}

The second script (“render” script) that you can define in the Scripts dialog allows you to modify the
widget representing the query after it has been drawn. Here you would use methods of the
corresponding Kendo Ul object, rather than configuration options. Objects available for your Javascript
here are:

1. “widget” object
2. “parser” object

The “widget” object represents the widget that has been drawn.

The “parser” object is the controller object described above.

Modifying default behavior and presentation of forms

To modify the default behavior and presentation of forms you need to go to a particular object form
that you want to modify and click on the Scripts property under the “Advanced” category in the list of
properties of the form. You can define “initialization” script or “render” script or both (see
“Architecture of the Client-side Code”).

The Javascript objects that are exposed to the initialization script for forms are the same as for
queries:

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar

2025/11/12 02:02 6/15 Writing client-side plugins

1. “config” object
2. “markup” object
3. “parser” object
4. “widgets” object

Just like with queries, the parser object represents the form controller and the “markup” object
represents the HTML markup of the form. However, there is a significant difference in the “config”
object exposed by forms. Whereas for queries the “config” object represents some widget of the
Kendo Ul library, that is mainly responsible for the implementation of the query, there is no such
widget for forms. A form is just an HTML code that consists of rows and columns of the Bootstrap grid
system (getbootstrap.com/css/). Each row and column contains attributes of the form - depending
on the type of the attribute they are either implemented as plain HTML or they may also include a
configuration for a Kendo Ul widget.

This HTML is also wrapped in a “panel” that includes HTML of toolbars around the form (if they are
defined) and also the implementation of the default or custom panel header. Note that the HTML that
includes toolbars and panel header is also included as part of the query markup.

So the “config” object for forms represents the configuration of a special Aware IM object called
“panel”. You can find the code of this object in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/panel.js file. At the beginning of the file there is a
description of all configturation parameters supported by this object. You can change these
parameters by your script..

For example, the following script will turn off the display of the header for the form, no matter what is
specified in the Aware IM properties of the form:

config.preventHeader = true;

However, you are unlikely to need it because most of these parameters can be customized in Aware
IM without having to use a script.

You may, however, want to modify the markup of the form - for example, you may want to modify the
generated layout or styling of some attributes. You can use it through the “markup” object (or in the
“render” script after the form has been drawn). The description of the HTML markup is beyond the
scope of this document. If you want to study it you can just generate a form and use the browser
inspector to display the HTML of the form. You can then use your scripts to modify this markup.

You can, however, modify the widgets used by the form using the “widgets” object - you will probably
modify widgets that represent attributes in their own Advanced scripts, but you can also modify other
widgets used by a form, such as toolbars, for example - this has been already explained in the
previous section.

The “parser” object allows you to access certain properties of the system that you may need
(especially if you are modifying the markup of the form). The type of this object is
AwareApp_FormParser. You can look up full methods of this object in the file
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/parsers/formParser.js

Some useful methods of the parser object that you can use here are:

1. getField (attributeName, sectionName) - get the field of the form for the specified attribute and
form section
2. getReferenceParser (refAttrName) - get the “parser” of the reference attribute of the form,

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 02:02 7/15 Writing client-side plugins

responsible for displaying a table, calendar etc - see 8.1

The second script (“render” script) that you can define in the Scripts dialog allows you to modify the
form after it has been drawn. Here you can only use jQuery methods to modify the resulting
document markup. The only object available for you here is the “parser” object representing the form
controller.

Modifying default behavior and presentation of form
sections

Modifying the default behavior of a form section only makes sense if a form has more than one
section defined. If a form has one section than you should modify the behavior of the form, not
section, as described in the previous section. To modify the default behavior and presentation of a
form section you need to go to a particular form section of the form and click on the “Scripts”
property under the “Advanced” category in the list of properties of the form section.

The rules for defining the scripts are very similar to defining the scripts for forms, the only difference
being the “parser” object. The type of this object is AwareApp_FormSectionParser rather than
AwareApp_FormParser and the source code of the object is available in this file:

AwarelM/Tomcat/webapps/AwarelM/aware_kendo/parsers/formSectionParser.js

Modifying default presentation of individual fields on forms

To modify the default presentation of an individual field on an object form you need to go to the
presentation properties of the corresponding attribute and click on the “Advanced” property. There is
only one script available for you here.

As explained in the “Architecture of the client-side code” the controller of the form prepares the HTML
markup of the form as well as the list of Kendo Ul widgets that the form includes. Apart from other
things the markup of the form contains markups of individual fields present on the form. And the
collection of widgets for the form includes widgets used by individual fields (note that not all fields use
widgets, some use markup only). Each type of field on the form is represented by its own Aware IM
Javascript object (see the table below).

The form controller asks every individual field on the form to prepare its markup and the collection of
widgets. Then it assembles the result into the final markup and widget collection of the form. The
script for each indivisual field is executed just before it is given to the form controller, so that the
script has a chance to modify the markup or widget configuration.

There are three objects exposed to the script:

1. “field” - this is Aware IM object representing the field (see the table below)
2. “markup” - this is the HTML markup of the field (jQuery object)
3. “config” - this is the object that represents a widget configuration of the field or null if the field
does not use a widget. The object has the following properties:
1. “type” - type of the widget
2. “id"” - the id of the element in the markup used by the widget

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 02:02 8/15 Writing client-side plugins

3. “config” - the Kendo Ul configuration of the widget

You can modify modify any of these object. For example, if you want to hide the field you can write
the following script:

markup.css (“display, “none”);

Or if you want to change which tools are available for an HTML editor field (see
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor#configuration-tools), you could write the
following script:

config.config.tools = [“bold”, “italic”, “underline”]

There are some useful methods of the “field” object that you can use in your script (the code of all all
the objects representing different fields is in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/field/fields.js file.

1. field.getAttributeName () - retrieve the name of the object attribute
2. field.getObjectName () - retrieve the name of the object
3. field.getObjectld () - retrieve the id of the object

and so on.

Note that if you want to access the field after it has already been drawn you need to find the field on
the form and so you need to modify the “render” script of the form, like so, for example:

var field = parser.getField (“Account”, “Main”);
var value = field.getValue ();

The following table lists all different field types and the corresponding Kendo Ul widgets.

Aware IM
attribute Kendo Ul widget Aware IM field object
type

Plain Text (no
choices, 1 None AwareApp_TextField
line)

Plain Text (no
choices, None AwareApp_TextAreaField
several lines)
Plain Text,
Number,
Date with NumericText Box

radio or (http://docs.telerik.com/kendo-ui/api/javascript/ui/numerictextbox)
checkbox
choices

Plain Text,
Number,
Date with DropDownlList

text choices, |(http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist)
choices not
editable

AwareApp_NumberField

AwareApp_ComboField

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/editor#configuration-tools
http://docs.telerik.com/kendo-ui/api/javascript/ui/numerictextbox
http://docs.sencha.com/extjs/5.0/apidocs/#!/api/Ext.form.field.Radio
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist

2025/11/12 02:02 9/15 Writing client-side plugins
Plain Text,

Number,

Date with ComboBox AwareApp_ComboField

text choices, |(http://docs.telerik.com/kendo-ui/api/javascript/ui/combobox) PP

choices

editable

Date without |DatePicker AwareApp DateField

choices (http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker) PP_

. DateTimePicker , .
Timestamp http://docs.telerik.com/kendo-ui/api/javascript/ui/datetimepicker AwareApp_DateTimeField
Yes/No
(displayed as |None AwareApp_CheckboxField
checkbox)

I;Z/pl\llgyed as switch AwareApp_SwitchField

a switch) http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/switch -

Plain Text

with choices

represented [None AwareApp_CheckboxGroupField
as

checkboxes

Plain Text

with choices

represented [None AwareApp_RadioButtonGroupField
as radio

buttons

PlainText .

. . MultiSelect .
\sNglcgcrtrg;It" http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect AwareApp_TagField
PlainText Editor
g)'::q:tTML http://docs.telerik.com/kendo-ui/api/javascript/ui/editor AwareApp_HtmiEditorField
Document Upload AwareApp_DocumentField

http://docs.telerik.com/kendo-ui/api/javascript/ui/upload

Picture (not

Upload . ,
represented i . i ani . . AwareApp_PictureField
as signature) http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
Picture
(represented [None AwareApp_SignatureField
as signature)
Shortcut None AwareApp_ShortcutField
Reference
represented |DropDownlList .
by a drop (http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist) AwareApp_SelectReferenceField
down
Reference
represented |MultiSelect ,
by a multi- |http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect AwareApp_TagReferencefield
selector
Reference
represented .
by a “swap None AwareApp_SwapSelectField
select”
HTML cell None AwareApp_HtmlFiield
Gauge cell [LinearGauge .
(linear) http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/lineargauge AwareApp_GaugeField
Gauge cell |[RadialGauge .
(radial) http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/radialgauge AwareApp_GaugeField
S;?gle Map None AwareApp_GoogleMapField

Documentation -

http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/combobox
http://docs.telerik.com/kendo-ui/api/javascript/ui/datepicker
http://docs.telerik.com/kendo-ui/api/javascript/ui/datetimepicker
http://docs.telerik.com/kendo-ui/api/javascript/mobile/ui/switch
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/ui/editor
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/upload
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/dropdownlist
http://docs.telerik.com/kendo-ui/api/javascript/ui/multiselect
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/lineargauge
http://docs.telerik.com/kendo-ui/api/javascript/dataviz/ui/radialgauge

2025/11/12 02:02

10/15 Writing client-side plugins

Number
displayed as
slider

Slider

http://docs.telerik.com/kendo-ui/api/javascript/ui/slider

AwareApp_SliderField

Modifying default behavior of menu in visual perspectives

The idea here is very similar. You have two scripts available - initialization and render scripts. The
initialization script has a chance to modify the configuration of the menu widgets (almost all menu
types except Plain List are implemented by their own Kendo Ul widget (see the table below). The
render script can call the methods of the widget once it has been drawn.

The following objects are exposed to the initialization script:

1. “config” - this object represents Kendo Ul configuration of the menu widget
2. “parser” - the controller object (AwareApp_VPParser) - see the code in the file

AwarelM/Tomcat/webapps/AwarelM/aware_kendo/parsers/vpParser.js

For example to add some custom menu item to a toolbar menu you could write the following script:

config.items

.push ({

type: “button”,

spriteCssClass: “fa fa-edit”,

text: “My Menu Item”,

click: function () {

alert (“this is my menu item”);

}

2

Menu type |Kendo Ul widget Kendo Ul reference

Toolbar ToolBar http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar

Standard Menu|Menu

http://docs.telerik.com/kendo-ui/api/javascript/ui/menu

Panel Bar

PanelBar

http://docs.telerik.com/kendo-ui/api/javascript/ui/panelbar

Tree

TreeView

http://docs.telerik.com/kendo-ui/api/javascript/ui/treeview

Modifying default behavior and presentation of content
panels in visual perspectives

To modify the default behavior and presentation of content panels in visual perspectives you need to
go to a particular visual perspective that you want to modify, select the content panel and then click
on the “Scripts” property in the list of properties of the content panel.

The idea here is the same - you have two scripts as before. However, there are no Kendo Ul widgets

Documentation - http://www.awareim.com/dokuwiki/

http://docs.telerik.com/kendo-ui/api/javascript/ui/slider
http://docs.telerik.com/kendo-ui/api/javascript/ui/toolbar
http://docs.telerik.com/kendo-ui/api/javascript/ui/menu
http://docs.telerik.com/kendo-ui/api/javascript/ui/panelbar
http://docs.telerik.com/kendo-ui/api/javascript/ui/treeview

2025/11/12 02:02 11/15 Writing client-side plugins

to modify here - you can only modify the markup of the content panel (either during initialization or
after it has been drawn).

Two objects are exposed for the initialization script:

1. “config” - this is the configuration of the Aware IM “panel” object, the code of which is in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/panel.js

The markup of the panel is stored in the “bodyContent” property of the object config.bodyContent.
This is the markup you are most likely to modify here

“parser” object - this is the controller (AwareApp_Dashboard in
AwarelM/Tomcat/webapps/AwarelM/aware_kendo/parsers/dashboard.js

AwareApp object
When writing advanced scripts as described above you can use the AwareApp Javascript object that
contains some useful static methods. This is an example of calling one of these methods:
var panelld = AwareApp.getPanelld (“main”, “Accounts”, “My Accounts”);
The code of the object is located here: AwarelM/Tomcat/webapps/AwarelM/aware_ext/awareApp.js
The following methods can be used:
1. getPanelld (frameName, tabName, contentPanelName)
This method returns the unique id of the content panel in a visual perspective.
var id = AwareApp.getPanelld (‘main’, ‘Tabl’, ‘Content Panell’);
Parameters:
frameName - name of the frame in the visual perspective that contains the panel
tabName - name of the tab inside the frame that contains the panel
contentPanelName - name of the content panel
1. getFramePanelld (frameName)
This method returns the unique id of the frame in a visual perspective.
var id = AwareApp.getFramePanelld (‘main’);
Parameters:
frameName - name of the frame in the visual perspective
1. getTabPanelld (frameName, tabName)

This method returns the unique id of the tab in a visual perspective.

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 02:02 12/15 Writing client-side plugins

var id = AwareApp.getTabPanelld (‘main’, ‘Tabl’);
Parameters:
frameName - name of the frame in the visual perspective that contains the panel
tabName - name of the tab inside the frame that contains the panel
1. isRTL ()
Return true if the current user uses right-to-left layout
1. getMainTabPanel ()
If a visual perspective has tabs return the tab panel holding the tabs.
1. getProcessld ()
Return the id of the currently running process or -1 if there are no processes currently running.
1. isTestingMode ()
Return true if the current user is running in the testing mode
1. startProcess, runQuery and other methods mentioned in the User Guide

Please refer to the “Links to Aware IM operations” section in the User Guide, that explains how to set
up links to perform operations. All functions mentioned there can be used from your Javascript.

Using Javascript to integrate custom Cordova plugins for
native mobile applications

Cordova plugins are components that provide access to some built-in features of mobile phones,
(such as camera or contacts), for which there is no Javascript access. When components are
integrated into the system these features become available through some special Javascript functions
that the plugin makes available to the developer. Cordova plugins can only be used in native mobile
applications.

Aware IM integrates some Cordova plugins out-of- the-box and provides rule actions that activate
them (for example, MOBILE PUSH or MOBILE CAMERA SNAP INTO. However, there are many plugins
around and it is impossible to integrate all of them into Aware IM.

Still there is a way to do this by adding some custom Javascript to your application. The following
section explains how to do it.

This is the high level overview of what needs to be done:

1. Study the documentation of the Cordova plugin to fully understand Javascript methods that it
exposes
2. Write the Javascript that calls the appropriate Javascript function that the plugin provides
1. Give this function the data obtained from Aware IM if necessary. For example, read the

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 02:02 13/15 Writing client-side plugins

data from the database and provide this data to the function of the plugin. The useful
Aware IM function that can be used here is AwareApp.getObjectData()

2. Handle the return of this function if necessary - for example write the data returned by
the function to the database. Useful Aware IM functions for this are
AwareApp.createOrUpdateObject() and AwareApp.startProcessWithinit()

3. Define panel operations or menu items in the mobile part of your business space version (using
the Configuration Tool) that would run this Javascript. You should select an operation or menu
item of the “Execute Javascript” type for this.

4. Build a native mobile application for your business space version using the “Build Native Mobile
Application” command in the Configuration Tool. This will create a zip file.

5. Uzip this zip file somewhere. Find the config.xml file in the root of the unzipped application and
open it for editing.

6. Find the section in this file that lists the plugins used by the application, for example:

<plugin name="cordova-plugin-camera” spec="2.0.0" />

Add the definition of the Cordova plugin you need to integrate - look up the documentation of the
plugin for details of the plugin name and version number

1. Zip up the application again and use the PhoneGap build to create application files in the native
format of the mobile phone

Let’s look at an example. We will be integrating a Cordova plugin for Contacts into the CRM mobile
sample application.

The documentation of the plugin can be found here:
https://github.com/apache/cordova-plugin-contacts

As we can see the plugin provides the navigator.contacts object that can be used to create contacts,
find existing contact or pick a particular one. Let’s add the following functionality to the CRM
application:

1. From the form of a customer or from a customer list create a phone contact populated with the
information from the customer record in the application

2. Pick a contact from the list of phone contacts and send this contact an email that includes some
information stored in the application

Creating a contact on the phone

We need to use the “create” method of the navigator.contacts object and provide contact data
available in the customer record that we are parked on. Retrieving the data can be done using the
AwareApp.getObjectData function. It has the following signature:

getObjectData: function (objectName, objectld, callBackFunction)

ObjectName and objectld identify the record to retrieve and callBackFunction specifies a function that
will be called when the data has been retrieved. The function will be called with the object storing the
retrieved values.

How do we get object name and id? When we define an Aware IM operation of the “Execute Script”
type Aware IM automatically defines the following objects that we can use in our Javascript:

Documentation - http://www.awareim.com/dokuwiki/

https://github.com/apache/cordova-plugin-contacts

2025/11/12 02:02 14/15 Writing client-side plugins

1. parser
2. context

The parser object should be already familiar and the context object stores an array of objects with
objectName and objectld attributes. The record we are parked on is the first and only one in this
array. So to get objectName we use the following context[0].objectName; and to get object id we use
context[0].objectld

So the Javasrcipt we need to write to create a contact looks like this:
AwareApp.getObjectData (

context[0].objectName,

context[0].objectld,

function (objectData)

{

navigator.contacts.create ({

“displayName”: objectData[“FirstName”] + “ “ + objectData[“LastName”],
“birthday”: kendo.parseDate (objectData[“DateOfBirth”], “dd/MM/yyyy”, “en-US")
b

}

);

Note that here “displayName” and “birthday” are the names of the attribute of the Contact object on
the phone exposed by the plugin, whereas “FirstName”, “LastName” and “DateOfBirth” are the
names of the attributes of the Customer object in the CRM application. Note also that all Aware IM
attribute values are strings and if the plugin requires some other type (for example, date), then the
strings need to be converted to the appropriate type.

The next step is to create operations of the “Execute Script” type to the form and customer list. We

can add a panel operation to the “Editing Mobile” form of the Customer object and an operation with
record to the “Customer - all mobile” query. We then specify the above script as a parameter of the
operation.

Send email to the selected contact

We need to use the pickContact method of the navigator.contacts object to display a list of contacts,
let the user pick one and then we need to start a process in the application to send an email to the
email address of the contact picked by the user.

The email address returned by the plugin needs to be saved in some temporary object and then this
object can be used in the process. So we will create a temporary business object (persistence type -
memory) called ContactParam with the single EmailAddress attribute. We will then create a process

Documentation - http://www.awareim.com/dokuwiki/

2025/11/12 02:02 15/15 Writing client-side plugins

called SendEmailToContact with the ContactParam object as its input. The process will then use the
SEND action to send any email to this email address (the email can use tag expressions to retrieve
some information from the system - for example, from SystemSettings or from the logged in user).

To start a process we will use the AwareApp.startProcessWithlinit function. It has the following
signature:

startProcessWithinit: function (procName, renderOption, objName, initValues, context)

Here procName is the name of the process to start, renderOption is where to display the results of the
process (we can use null), objName is the name of the parameter object, initValues is the object
storing values of the parameter object and context contains additional parameter objects (null in our
case)

So our Javascript can look like this:
navigator.contacts.pickContact (function (contact)
{

var email = contact.emals[0].value;
AwareApp.startProcessWithinit (
“SendEmailToContact”,

null,

“ContactParam”,

{ “EmailAddress” : email }

b

function (error { console.log (error); }
);

Then we just need to add a command of the “Execute Script” type to the mobile menu of the
application.

From:
http://www.awareim.com/dokuwiki/ - Documentation

Permanent link:
http://www.awareim.com/dokuwiki/docs/3500/0800?rev=1680669488 8
(=] pe e

Last update: 2023/04/05 04:38

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/
http://www.awareim.com/dokuwiki/docs/3500/0800?rev=1680669488

	Table of Contents
	Writing client-side plugins
	Architecture of the client-side code
	Modifying default behavior and presentation of queries
	Modifying default behavior and presentation of forms
	Modifying default behavior and presentation of form sections
	Modifying default presentation of individual fields on forms
	Modifying default behavior of menu in visual perspectives
	Modifying default behavior and presentation of content panels in visual perspectives
	AwareApp object
	Using Javascript to integrate custom Cordova plugins for native mobile applications
	Creating a contact on the phone
	Send email to the selected contact

