2025/11/15 21:24 1/8 Rule Condition

Table of Contents

RUIE CONAITION ..ot e e e e ettt e e e e e e e e e s e nnanans 2
Arithmetic Operation ... —————— 2
ALEFIDULE TAENTITIr ittt e e e e e e e e e s e 2
L= = | PP P SO PPPPPPPPPN 3
o0 Tt o] o TP PPPP RPN 3
AQQregate OPEIAtIONeiiiiiiiiiiiee ettt e e et e e e s ek b b e e e e e s e b b e e e e e e s e nber e e e e e e nr e e e eeans 3
Relational @XPreSSIONcccccoiiiiiiiiiiiiiii e 4
STHiNG @XPIrESSIONccooiiiiiiiiiiiii et e e e e e et rrt et e e e e e e e a s e 5
AGGregate @XPIreSSION ...ttt 5
LiST @XPIrESSIONooiiiiiiiiiii ettt e et e et e e 6
RANGE @XPIeSSIONcoooiiiiiiiii ettt e et e e e e ekt e e e e et b e e e e e e s e brrraeeean 6
WAS CHANGED @XPIreSSIONcccooiiiiiiiieiiieiie ettt e et e e et e e e e e s snb e e e e e s annnneeas 6
Expressions that track changes in @ liSt ... 7
IS UNDEFINED @XPIreSSIONccoiiiiiiiiiiii e iiii ettt s a e as 8
IS NEW @XPIE@SSIONccoooiiiiiiieeeeee ettt e e e e e e e e s s e e bbbttt e e e e e e e eeeeeeaannns 8

Documentation - http://www.awareim.com/dokuwiki/

2025/11/15 21:24 2/8 Rule Condition

Manuals, Rule Language

Rule Condition

The formal definition of the 'RuleCondition' in the BNF notation is:

PredicateExpression ()

(

|
"AND" PredicateExpression()
)*

"OR" PredicateExpression()

In other words the 'RuleCondition' represents one or more Predicate expressions connected with
AND or OR keywords.

The Predicate expression can be either of the following:

Relational expression
String expression
Aggregate expression

List expression

Range expression

WAS CHANGED expression
IS DEFINED expression
IS NEW expression

©® N WN

All of the above expressions can be optionally negated by using the NOT keyword in front of the
expression (with the expression enclosed in brackets), for example NOT (Account.State IN
"OPEN', 'CLOSED', 'SUSPENDED') - checks if the state of an account is not OPEN, CLOSED or
SUSPENDED.

Arithmetic Operation

Before describing various predicate expressions we will describe another language construct that is
used in most of these expressions - Arithmetic Operation.

Arithmetic Operation can be either of the following:

1. Attribute Identifier
2. Literal

3. Function

4. Aggregate Operation

Attribute ldentifier

The Attribute Identifier construct is used to refer to both business objects and their attributes.

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/tag/manuals?do=showtag&tag=Manuals
http://www.awareim.com/dokuwiki/tag/rule_language?do=showtag&tag=Rule_Language

2025/11/15 21:24 3/8 Rule Condition

Attributes of business objects are separated from the business objects’ hames by the dot symbol, for
example Account.State. IF an attribute refers to another business object then an attribute of the
referred business object can be indicated using the name of the reference attribute of the parent and
the name of the attribute of the referred business object, for example, Account.Type.Name. The
level of nesting of attributes has no limit.

Literal

Literal represents a constant. The following types of constants are recognized:

1. Number (integer or floating point), for example, 3 or 5.6

2. String (must be enclosed in apostrophe), for example 'CLOSED' or 'Balance must be
positive'

3. Date (in dd/mm/yy format), for example 05/12/98

Date/Time (in dd/mm/yy HH:mm format), for example 05/12/98 17:05

5. Duration (in #w#dHH:mm, where # stands for any digit, HH - for hours and mm - for
minutes), for example, 2w3d10:45

6. UNDEFINED, for example Loan.Item = UNDEFINED

»

Function

A function performs some calculation and returns the result as a Literal. There are a number of built-in
functions that Aware IM supports. New functions can be plugged in as well (see “Aware IM
Programmer’s Referefence”). A function may or may not have parameters. Parameters of a function
must be Arithmetic Operations. IF a function does not have parameters then it can be referred to by
name only. IF a function has parameters, they are listed after the function’s name and enclosed in
brackets. Parameters are separated by the comma symbol. Examples of functions:

e CURRENT DATE - function with no parameters

e LENGTH (Customer.Name) - function with one parameter

e MONTH DIFFERENCE (Account.OpeningDate, Account.ClosingDate) - function with
two parameters

The complete list of built-in functions supported by Aware IM is provided in the here.
Aggregate Operation

The Aggregate Operation performs arithmetic calculations on a number of business objects
and/or their attributes, for example, calculates the sum total of a certain attribute:

SUM Account.Balance - calculates the total balance of all available accounts.

The operation may be applied not on all available objects of the specified type, but on objects that
meet the specified condition. The condition is optionally indicated after the WHERE keyword and must
be enclosed in brackets, for example:

SUM Account.Balance WHERE (Account.State='0PEN"') - calculates the total balance of all
open accounts. The format of the condition, that follows the WHERE keyword is the same as that of

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/actions_functionslists/3200_functions/xx_function_list

2025/11/15 21:24 4/8 Rule Condition

any Rule Condition.
The following Aggregate Operations are supported:

SUM - calculate the sum total of an attribute
COUNT - calculate the number of available objects
MIN - calculate minimum value of an attribute
MAX - calculate maximum value of an attribute
AVG - calculate average value of an attribute

ke whe

note

SUM, MIN, MAX, AVG calculations must not use attributes of the Reference type, for example
the following expression is not valid:

SUM Account.Transactions.Amount

IF aggregate of the referred object is required as in the example above, the following
expression must be used:

SUM Transaction.Amount WHERE (Transaction IN Loan.Transactions)

nhote
COUNT operation MUST only use the name of the business object, which it counts, for example,

COUNT Account or COUNT Account WHERE (Account.State='Open')

hote
Using references is not allowed, for example the following construct is invalid:

COUNT Account.Transactions
The valid expression that achieves the desired result is:

COUNT Transaction WHERE (Transaction IN Account.Transactions)

Relational expression

The Relational Expression compares two Arithmetic Operations using the following comparison
operators:

1. =

Documentation - http://www.awareim.com/dokuwiki/

2025/11/15 21:24 5/8 Rule Condition

o v kAW
A
Il

<> (not equal)

Examples of valid relational expressions:
Account.State = 'CLOSED'

Account.Balance < Account.Type.MinBalance + 100

String expression

The String Expression has the following format:
ArithmeticOperation() (STARTSWITH | ENDSWITH | CONTAINS) ArithmeticOperation()

It checks whether an arithmetic operation (usually an attribute of a business object) starts with (or
ends with or contains) the specified arithmetic operation that produces a string (usually a string
literal), for example:

Account.Name STARTSWITH 'John'
Account.Name ENDSWITH 'Smith'

Account.Name CONTAINS 'it'

Aggregate expression

Two forms of the Aggregate Expression are supported in the Rule Language:

1. EXISTS expression is very similar to Aggregate Operation, except that the result of the EXISTS
expression is true or false, rather than arithmetic value. The syntax and usage are the same as
that of the Aggregate Operation. The EXISTS operation checks whether there are any
instances of the specified business object in the system, for example,

o IF EXISTS Account THEN ...

o IF EXISTS Account WHERE (Account.State = 'Open') THEN ...

2. IN expression checks whether a particular instance of a business object is in the reference list
of another object. For example,

o IF Transaction IN Account.Transactions THEN ...

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/docs/2000_concepts/0800_data_processing/0100_rule_evaluation/0200_aggregate_operations

2025/11/15 21:24 6/8 Rule Condition

It is possible to use a special expression LOGGED IN USERS instead of the list of references. This will
check if the specified user is logged in, for example:

FIND SystemUser WHERE SystemUser.LoginName='John'
IF SystemUser IN LOGGED IN USERS THEN

DISPLAY MESSAGE 'John is logged in'

List expression

The List Expression checks whether the value of a particular attribute of a business object is equal to
one of the specified values in the provided list. The syntax in the notation is as follows:

Attributeldentifier () IN Literal () (, Literal ())*

In other words an attribute identifier is followed by the keyword IN and then is followed by one or
more literals. Any kind of literal is valid. Some examples of valid list expressions:

Account.State IN 'Open', 'Closed'’

Account.Balance IN 1000, 2000, 3000

Range expression

The Range Expression checks whether the value of a particular attribute of a business object is within
the specified range of values. The syntax in the BNF notation is as follows:

ArithmeticOperation () BETWEEN ArithmeticOperation () AND ArithmeticOperation ()

Note that using comma instead of AND is also allowed. Examples of valid range expressions:
Account.Balance BETWEEN 10000 AND 20000;

Transaction.Amount BETWEEN Account.Balance/2, 5000

note
both ranges are inclusive

WAS CHANGED expression

The WAS CHANGED expression checks whether the value of a particular attribute of a business object
has been changed compared to the value stored in the system. There are several variations of this
expression:

Documentation - http://www.awareim.com/dokuwiki/

2025/11/15 21:24 7/8 Rule Condition

1. Attributeldentifier () WAS CHANGED - checks if an attribute has been changed. For example,

IF Account.State WAS CHANGED THEN ...

The entire object can be checked as well - in this case all attributes of the object are checked
for changes, for example

IF Account WAS CHANGED

2. Attributeldentifier () WAS CHANGED TO Literal () - checks if an attribute has been changed and
the new value is equal to the specified value, for example,

IF Account.State WAS CHANGED TO 'Open' THEN ...

3. Attributeldentifier () WAS CHANGED BY ANY USER - deprecated. Functionally equivalent to WAS
CHANGED.

note

When comparing new and old values of the attribute, the WAS CHANGED expression only
checks whether the value has been changed compared to the value of the attribute in the last
stable version of the business object. See the “Evaluation of WAS CHANGED expressions”
section for a more detailed explanation.

Expressions that track changes in a list

The WAS CHANGED expression can be used for reference lists as well as for ordinary attributes. The
WAS CHANGED expression for lists indicates whether there were any references changed or removed
from the list compared to the last stable version (see the “Evaluation of WAS CHANGED expressions”
section for a more detailed explanation). For example,

IF Account.Transactions WAS CHANGED THEN ...

It is possible to identify more precisely how a reference list has been changed and perform actions
based on the values of the objects that have been added or removed from the list. The WAS ADDED
TO expression can be used to check whether any objects have been added to the list and the WAS
REMOVED FROM expression can be used to check whether the objects have been removed from the
list. To refer to the objects that have been added or removed, the Added and Removed instance
prefixes can be used respectively (see the “Instance Prefixes” section. For example,

IF Transaction WAS ADDED TO Account.Transactions THEN
INCREASE Account.Balance BY AddedTransaction.Amount

IF Transaction WAS REMOVED FROM Account.Transactions THEN
REDUCE Account.Balance BY RemovedTransaction.Amount

IF the list itself hasn’t changed, but an element belonging to the list has been, then this situation can
be checked using the following expression:

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/docs/2000_concepts/0800_data_processing/0100_rule_evaluation/0900_evaluation_was_changed_expressions
http://www.awareim.com/dokuwiki/docs/2000_concepts/0800_data_processing/0100_rule_evaluation/0900_evaluation_was_changed_expressions
http://www.awareim.com/dokuwiki/docs/2000_concepts/0800_data_processing/0100_rule_evaluation/0800_context_rule_execution/0200_instance_prefixes

2025/11/15 21:24 8/8 Rule Condition

IF Transaction FROM Account.Transactions WAS CHANGED THEN
INCREASE Account.Balance BY (ChangedTransaction.Amount —
OLD VALUE(Transaction.Amount))

IS UNDEFINED expression

The IS UNDEFINED expression checks whether the value of a particular attribute of a business object
is defined. Typically a value is undefined if it is “blank” - for example, the user didn't fill in the value
in the form of the business object. For reference attributes “undefined” means that the reference list
is empty. There are two variations of this expression:

1. Attributeldentifier () IS UNDEFINED - checks whether an attribute is undefined, for example,
IF Account.State IS UNDEFINED THEN ...
2. Attributeldentifier () IS DEFINED - checks whether an attribute is defined, for example,

IF Account.State IS DEFINED THEN ...

IS NEW expression

The IS NEW expression checks whether the particular object specified in the expression is being
created, for example

IF NOT (Message IS NEW) THEN PROTECT Message.Subject

In this example the Subject attribute of the Message object is protected if the object already exists
in the system.

From:
http://www.awareim.com/dokuwiki/ - Documentation

Permanent link:

Last update: 2022/09/13 18:09

Documentation - http://www.awareim.com/dokuwiki/

http://www.awareim.com/dokuwiki/
http://www.awareim.com/dokuwiki/docs/3000_rule_language/0400_rule_language?rev=1661922743

	Table of Contents
	Rule Condition
	Arithmetic Operation
	Attribute Identifier
	Literal
	Function
	Aggregate Operation

	Relational expression
	String expression
	Aggregate expression
	List expression
	Range expression
	WAS CHANGED expression
	Expressions that track changes in a list

	IS UNDEFINED expression
	IS NEW expression

